Skip to main content
Log in

Stationary Sets and Asymptotic Behavior of the Mean Curvature Flow with Forcing in the Plane

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider the flat flow solutions of the mean curvature equation with a forcing term in the plane. We prove that for every constant forcing term the stationary sets are given by a finite union of disks with equal radii and disjoint closures. On the other hand for every bounded forcing term tangent disks are never stationary. Finally in the case of an asymptotically constant forcing term we show that the only possible long time limit sets are given by disjoint unions of disks with equal radii and possibly tangent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. the Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  2. Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–438 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bellettini, G., Caselles, V., Chambolle, A., Novaga, M.: The volume preserving crystalline mean curvature flow of convex sets in \({{\mathbb{R}}} ^n\). J. Math. Pures Appl. 92, 499–527 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bellettini, G., Novaga, M.: Comparison results between minimal barriers and viscosity solutions for geometric evolutions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 97–131 (1998)

  5. Bellettini, G., Paolini, M.: Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19, 43–67 (1995). Errata, ibid. 26, 161–165 (2002)

  6. Bonnesen, T.: Les problèmes des isopérimètres et des isépiphanes. Gautier-Villars, Paris (1929)

    MATH  Google Scholar 

  7. Brakke, K.A.: The Motion of a Surface by its Mean Curvature. Math. Notes, vol. 20, Princeton Univ. Press, Princeton, NJ (1978)

  8. Chambolle, A., Morini, M., Ponsiglione, M.: Nonlocal curvature flows. Arch. Ration. Mech. Anal. 12, 1263–1329 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chambolle, A., Novaga, M.: Implicit time discretization of the mean curvature flow with a discontinuous forcing term. Interfaces Free Bound. 10, 283–300 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature. Proc. Jpn. Acad. Ser. A Math. Sci. 65, 207–210 (1989)

    Article  MathSciNet  Google Scholar 

  11. Cicalese, M., Leonardi, G.P.: Best constants for the isoperimetric inequality in quantitative form. J. Eur. Math. Soc. 15, 1101–1129 (2013)

    Article  MathSciNet  Google Scholar 

  12. De Giorgi, E.: New ideas in calculus of variations and geometric measure theory. In: Motion by Mean Curvature and Related Topics, vol. 1994, pp. 63–69. Walter de Gruyter, Berlin (1992)

  13. Delgadino, M., Maggi, F.: Alexandrov’s theorem revisited. Anal. PDE 12, 1613–1642 (2019)

    Article  MathSciNet  Google Scholar 

  14. Dirr, N., Luckhaus, S., Novaga, M.: A stochastic selection principle in case of fattening for curvature flow. Calc. Var. Partial Differ. Equ. 4, 405–425 (2001)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom. 33, 635–681 (1991)

    Article  MathSciNet  Google Scholar 

  16. Giga, Y., Mitake, H., Tran, H.V.: Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. In: Discret. Contin. Dyn. Syst. Ser. B. (2019). https://doi.org/10.3934/dcdsb.2019228

    Chapter  Google Scholar 

  17. Giga, Y., Tran, H.V., Zhang, L.J.: On obstacle problem for mean curvature flow with driving force. Geom. Flows 4, 9–29 (2019)

    Article  MathSciNet  Google Scholar 

  18. Huisken, G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Kasai, K., Tonegawa, Y.: A general regularity theory for weak mean curvature flow. Calc. Var. Partial Differ. Equ. 50, 1–68 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kim, I., Kwon, D.: On mean curvature flow with forcing. Commun. Partial Differ. Equ. 45, 414–455 (2020)

    Article  MathSciNet  Google Scholar 

  21. Luckhaus, S., Stürzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3, 253–271 (1995)

    Article  MathSciNet  Google Scholar 

  22. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)

  23. Morini, M., Ponsiglione, M., Spadaro, E.: Long time behaviour of discrete volume preserving mean curvature flows. J. Reine Angew. Math. (to appear)

  24. Mugnai, L., Seis, C., Spadaro, E.: Global solutions to the volume-preserving mean-curvature flow. Calc. Var. Partial Differ. Equ. 55, 18 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of N.F. has been funded by PRIN Project 2015PA5MP7. The research of V.J. was supported by the Academy of Finland grant 314227. N.F. and M.M. are members of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Fusco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusco, N., Julin, V. & Morini, M. Stationary Sets and Asymptotic Behavior of the Mean Curvature Flow with Forcing in the Plane. J Geom Anal 32, 53 (2022). https://doi.org/10.1007/s12220-021-00806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00806-x

Keywords

Navigation