Skip to main content
Log in

The Hartogs Extension Phenomenon in Toric Varieties

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the Hartogs extension phenomenon in non-compact toric varieties and its relation to the first cohomology group with compact support. We show that a toric variety admits this phenomenon if at least one connected component of the fan complement is concave, proving by this an earlier conjecture M. Marciniak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andersson, M., Samuelsson, H.: Koppelman formulas and the \(\bar{\partial }\)-equation on an analytic space. J. Funct. Anal. 261(3), 777–802 (2011)

    Article  MathSciNet  Google Scholar 

  2. Andreotti, A., Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90, 193–259 (1962)

    Article  Google Scholar 

  3. Andreotti, A., Hill, D., Levi, E.E.: convexity and the Hans Levy problem. Part I: reduction to vanishing theorems. Ann. Sc. Norm. Super. Pisa 26(2), 325–363 (1972)

    MATH  Google Scholar 

  4. Andreotti, A., Vesentini, E.: Carlemann estimates for the Laplace–Beltrami equation on complex manifolds. Publ. Math. IHÉS 25, 81–130 (1965)

    Article  Google Scholar 

  5. Bănică, C., Stănăşilă, O.: Algebraic Methods in the Global Theory of Complex Spaces. Wiley, New York (1976)

    MATH  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  7. Bredon, G.E.: Sheaf Theory. Springer, New York (1997)

    Book  Google Scholar 

  8. Bredon, G.E.: Topology and Geometry. Springer, New York (1993)

    Book  Google Scholar 

  9. Colţoiu, M., Ruppenthal, J.: On Hartogs extension theorem on \((n-1)\)-complete complex spaces. J. Reine Angew. Math. 637, 41–47 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Cox, D., Little, J., Schenck, H.: Toric Varieties. AMS, Providence (2011)

    Book  Google Scholar 

  11. Demailly, J.-P.: Complex Analytic and Differential Geometry. Universite de Grenoble I, Institut Fourier, Saint-Martin-d’Hères (2012)

    Google Scholar 

  12. Dwilewicz, R.: Holomorphic extensions in complex fiber bundles. J. Math. Anal. Appl. 322, 556–565 (2006)

    Article  MathSciNet  Google Scholar 

  13. Grauert, H., Peternell, T., Remmert, R. (Eds.): Several Complex Variables VII. Sheaf-Theoretical Methods in Complex Analysis. Springer, Berlin (1994)

  14. Harvey, R.: The theory of hyperfunctions on totally real subsets of complex manifolds with applications to extension problems. Am. J. Math. 91(4), 853–873 (1969)

    Article  MathSciNet  Google Scholar 

  15. Kohn, J.J., Rossi, H.: On the extension of holomorphic functions from the boundary of a complex manifold. Ann. Math. 81, 451–472 (1965)

    Article  MathSciNet  Google Scholar 

  16. Marciniak, M. A.: Holomorphic extensions in toric varieties: Doctoral Dissertations, Ph.D. in Mathematics. Missouri University of Science and Technology (2009)

  17. Marciniak, M.A.: Holomorphic extensions in smooth toric surfaces. J. Geom. Anal. 22, 911–933 (2012)

    Article  MathSciNet  Google Scholar 

  18. Marciniak, M. A.: Compactly Supported Cohomology Groups of Smooth Toric Surfaces. arXiv: 1505.06388

  19. Merker, J., Porten, E.: The Hartogs extension theorem on \((n-1)\)-complete complex spaces. J. Reine Angew. Math. 637, 23–39 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Oda, T.: Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties. Springer, Berlin (1988)

    MATH  Google Scholar 

  21. Øvrelid, N., Vassiliadou, S.: Hartogs extension theorems on Stein spaces. J. Geom. Anal. 20, 817–836 (2010)

    Article  MathSciNet  Google Scholar 

  22. Range, M.: Extension phenomena in multidimensional complex analysis: correction of the historical record. Math. Intell. 24(2), 4–12 (2002)

    Article  MathSciNet  Google Scholar 

  23. Rossi, H.: Vector fields on analytic spaces. Ann. Math. 78(3), 455–467 (1963)

    Article  MathSciNet  Google Scholar 

  24. Serre, J.P.: Quelques problemes globaux relatifs aux varietes de Stein. Coll. Plus. Var. Bruxelles 57–68 (1953)

  25. Shchuplev, A., Tsikh, A., Yger, A.: Residual kernels with singularities on coordinate planes. Proc. Steklov Inst. Math. 253, 256–274 (2006)

    Article  MathSciNet  Google Scholar 

  26. Tsikh, A., Yger, A.: Residue currents. J. Math. Sci. 120, 1916–1971 (2004)

    Article  MathSciNet  Google Scholar 

  27. Vidras, A., Yger, A.: On some generalizations of Jacobi’s residue formula. Ann. Sci. Norm. Sup. Ser. 4 34(1), 131–157 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Krasnoyarsk Mathematics Center and financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of regional Centers for Mathematics Research and Education (Agreement No. 075-02-2020-1534/1). The authors are grateful to the reviewer for a careful reading of the manuscript and comments that helped to improve the readability and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Shchuplev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feklistov, S., Shchuplev, A. The Hartogs Extension Phenomenon in Toric Varieties. J Geom Anal 31, 12034–12052 (2021). https://doi.org/10.1007/s12220-021-00710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00710-4

Keywords

Mathematics Subject Classification

Navigation