Abstract
We prove that if \(f:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) is convex and \(A\subset {\mathbb {R}}^n\) has finite measure, then for any \(\varepsilon >0\) there is a convex function \(g:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) of class \(C^{1,1}\) such that \({\mathcal {L}}^n(\{x\in A:\, f(x)\ne g(x)\})<\varepsilon \). As an application we deduce that if \(W\subset {\mathbb {R}}^n\) is a compact convex body then, for every \(\varepsilon >0\), there exists a convex body \(W_{\varepsilon }\) of class \(C^{1,1}\) such that \({\mathcal {H}}^{n-1}\left( \partial W\setminus \partial W_{\varepsilon }\right) < \varepsilon \). We also show that if \(f:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) is a convex function and f is not of class \(C^{1,1}_{\mathrm{loc}}\), then for any \(\varepsilon >0\) there is a convex function \(g:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) of class \(C^{1,1}_{\mathrm{loc}}\) such that \({\mathcal {L}}^n(\{x\in {\mathbb {R}}^n:\, f(x)\ne g(x)\})<\varepsilon \) if and only if f is essentially coercive, meaning that \(\lim _{|x|\rightarrow \infty }f(x)-\ell (x)=\infty \) for some linear function \(\ell \). A consequence of this result is that, if S is the boundary of some convex set with nonempty interior (not necessarily bounded) in \({\mathbb {R}}^n\) and S does not contain any line, then for every \(\varepsilon >0\) there exists a convex hypersurface \(S_{\varepsilon }\) of class \(C^{1,1}_{\text {loc}}\) such that \({\mathcal {H}}^{n-1}(S\setminus S_{\varepsilon })<\varepsilon \).
Similar content being viewed by others
Notes
We could use Lusin’s theorem instead of Theorem 2.1.
References
Alberti, G.: A Lusin type theorem for gradients. J. Funct. Anal. 100(1), 110–118 (1991)
Alberti, G.: On the structure of singular sets of convex functions. Calc. Var. Partial Differ. Equ. 2(1), 17–27 (1994)
Alberti, G., Ambrosio, L.: A geometrical approach to monotone functions in \({\mathbb{R}}^n\). Math. Z. 230(2), 259–316 (1999)
AlexandroffAlexandroff, A.D.: Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it. Leningr. State Univ. Ann. [Uchenye Zapiski] Math. Ser. 6, 3–35 (1939). Russian
Azagra, D.: Global and fine approximation of convex functions. Proc. Lond. Math. Soc. 107, 799–824 (2013)
Azagra, D.: Locally \(C^{1,1}\) convex extensions of \(1\)-jets, preprint, 2019, arXiv:1905.02127. To appear in Rev. Matemática Iberoamericana
Azagra, D., Le Gruyer, E., Mudarra, C.: Explicit formulas for \(C^{1,1}\) and \(C^{1,\omega }_{\rm conv}\) extensions of 1-jets in Hilbert and superreflexive spaces. J. Funct. Anal. 274, 3003–3032 (2018)
Azagra, D., Mudarra, C.: Whitney extension theorems for convex functions of the classes \(C^1\) and \(C^{1, \omega }\). Proc. Lond. Math. Soc. 114, 133–158 (2017)
Azagra, D., Mudarra, C.: Global geometry and \(C^1\) convex extensions of \(1\)-jets. Anal. PDE 12(4), 1065–1099 (2019)
Bagby, T., Ziemer, W.P.: Pointwise differentiability and absolute continuity. Trans. Am. Math. Soc. 191, 129–148 (1974)
Bianchi, G., Colesanti, A., Pucci, C.: On the second differentiability of convex surfaces. Geom. Dedic. 60, 39–48 (1996)
Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions. Studia Math. 106, 77–92 (1993)
Bojarski, B., Hajłasz, P., Strzelecki, P.: Improved \(C^{k, \lambda }\) approximation of higher order Sobolev functions in norm and capacity. Indiana Univ. Math. J. 51, 507–540 (2002)
Bourgain, J., Korobkov, M.V., Kristensen, J.: On the Morse-Sard property and level sets of \(W^{n,1}\) Sobolev functions on \({\mathbb{R}}^n\). J. Reine Angew. Math. 700, 93–112 (2015)
Calderón, A.P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Studia Math. 20, 171–225 (1961)
Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)
Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 653, 137 (1999)
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015)
Federer, H.: Surface area. II. Trans. Am. Math. Soc. 55, 438–456 (1944)
Francos, G.: The Luzin theorem for higher-order derivatives. Mich. Math. J. 61, 507–516 (2012)
Imomkulov, S.A., Twice differentiability of subharmonic functions. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 56, 877–888; translation in Russian Acad. Sci. Izv. Math. 41(1993), 157–167 (1992)
Isakov, N.M.: A global property of approximately differentiable functions. Math. Notes Acad. Sci. USSR 41(1987), 280–285 (1987)
Kirchheim, B., Kristensen, J.: Differentiability of convex envelopes. C. R. Acad. Sci. Paris Sér. I Math. 333(8), 725–728 (2001)
Liu, F.-C.: A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26, 645–651 (1977)
Liu, F.-C., Tai, W.-S.: Approximate Taylor polynomials and differentiation of functions. Topol. Methods Nonlinear Anal. 3(1), 189–196 (1994)
Moonens, L., Pfeffer, W.F.: The multidimensional Luzin theorem. J. Math. Anal. Appl. 339, 746–752 (2008)
Michael, J., Ziemer, W.P.: A Lusin type approximation of Sobolev functions by smooth functions. Contemp. Math. 42, 135–167 (1985)
Roberts, A.W., Varberg, D.E.: Convex functions. Pure and Applied Mathematics, vol. 57. Academic Press, New York (1973)
Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36, 63–89 (1934)
Whitney, H.: On totally differentiable and smooth functions. Pac. J. Math. 1, 143–159 (1951)
Ziemer, W.P.: Weakly Differentiable Functions. Springer, Berlin (1989)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Azagra, D., Hajłasz, P. Lusin-Type Properties of Convex Functions and Convex Bodies. J Geom Anal 31, 11685–11701 (2021). https://doi.org/10.1007/s12220-021-00696-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12220-021-00696-z