Skip to main content
Log in

Lusin-Type Properties of Convex Functions and Convex Bodies

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We prove that if \(f:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) is convex and \(A\subset {\mathbb {R}}^n\) has finite measure, then for any \(\varepsilon >0\) there is a convex function \(g:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) of class \(C^{1,1}\) such that \({\mathcal {L}}^n(\{x\in A:\, f(x)\ne g(x)\})<\varepsilon \). As an application we deduce that if \(W\subset {\mathbb {R}}^n\) is a compact convex body then, for every \(\varepsilon >0\), there exists a convex body \(W_{\varepsilon }\) of class \(C^{1,1}\) such that \({\mathcal {H}}^{n-1}\left( \partial W\setminus \partial W_{\varepsilon }\right) < \varepsilon \). We also show that if \(f:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) is a convex function and f is not of class \(C^{1,1}_{\mathrm{loc}}\), then for any \(\varepsilon >0\) there is a convex function \(g:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) of class \(C^{1,1}_{\mathrm{loc}}\) such that \({\mathcal {L}}^n(\{x\in {\mathbb {R}}^n:\, f(x)\ne g(x)\})<\varepsilon \) if and only if f is essentially coercive, meaning that \(\lim _{|x|\rightarrow \infty }f(x)-\ell (x)=\infty \) for some linear function \(\ell \). A consequence of this result is that, if S is the boundary of some convex set with nonempty interior (not necessarily bounded) in \({\mathbb {R}}^n\) and S does not contain any line, then for every \(\varepsilon >0\) there exists a convex hypersurface \(S_{\varepsilon }\) of class \(C^{1,1}_{\text {loc}}\) such that \({\mathcal {H}}^{n-1}(S\setminus S_{\varepsilon })<\varepsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We could use Lusin’s theorem instead of Theorem 2.1.

References

  1. Alberti, G.: A Lusin type theorem for gradients. J. Funct. Anal. 100(1), 110–118 (1991)

    Article  MathSciNet  Google Scholar 

  2. Alberti, G.: On the structure of singular sets of convex functions. Calc. Var. Partial Differ. Equ. 2(1), 17–27 (1994)

    Article  MathSciNet  Google Scholar 

  3. Alberti, G., Ambrosio, L.: A geometrical approach to monotone functions in \({\mathbb{R}}^n\). Math. Z. 230(2), 259–316 (1999)

    Article  MathSciNet  Google Scholar 

  4. AlexandroffAlexandroff, A.D.: Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it. Leningr. State Univ. Ann. [Uchenye Zapiski] Math. Ser. 6, 3–35 (1939). Russian

    MathSciNet  Google Scholar 

  5. Azagra, D.: Global and fine approximation of convex functions. Proc. Lond. Math. Soc. 107, 799–824 (2013)

    Article  MathSciNet  Google Scholar 

  6. Azagra, D.: Locally \(C^{1,1}\) convex extensions of \(1\)-jets, preprint, 2019, arXiv:1905.02127. To appear in Rev. Matemática Iberoamericana

  7. Azagra, D., Le Gruyer, E., Mudarra, C.: Explicit formulas for \(C^{1,1}\) and \(C^{1,\omega }_{\rm conv}\) extensions of 1-jets in Hilbert and superreflexive spaces. J. Funct. Anal. 274, 3003–3032 (2018)

    Article  MathSciNet  Google Scholar 

  8. Azagra, D., Mudarra, C.: Whitney extension theorems for convex functions of the classes \(C^1\) and \(C^{1, \omega }\). Proc. Lond. Math. Soc. 114, 133–158 (2017)

    Article  MathSciNet  Google Scholar 

  9. Azagra, D., Mudarra, C.: Global geometry and \(C^1\) convex extensions of \(1\)-jets. Anal. PDE 12(4), 1065–1099 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bagby, T., Ziemer, W.P.: Pointwise differentiability and absolute continuity. Trans. Am. Math. Soc. 191, 129–148 (1974)

    Article  MathSciNet  Google Scholar 

  11. Bianchi, G., Colesanti, A., Pucci, C.: On the second differentiability of convex surfaces. Geom. Dedic. 60, 39–48 (1996)

    Article  MathSciNet  Google Scholar 

  12. Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions. Studia Math. 106, 77–92 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Bojarski, B., Hajłasz, P., Strzelecki, P.: Improved \(C^{k, \lambda }\) approximation of higher order Sobolev functions in norm and capacity. Indiana Univ. Math. J. 51, 507–540 (2002)

    Article  MathSciNet  Google Scholar 

  14. Bourgain, J., Korobkov, M.V., Kristensen, J.: On the Morse-Sard property and level sets of \(W^{n,1}\) Sobolev functions on \({\mathbb{R}}^n\). J. Reine Angew. Math. 700, 93–112 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Calderón, A.P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Studia Math. 20, 171–225 (1961)

    Article  MathSciNet  Google Scholar 

  16. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  17. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 653, 137 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015)

  19. Federer, H.: Surface area. II. Trans. Am. Math. Soc. 55, 438–456 (1944)

    Article  MathSciNet  Google Scholar 

  20. Francos, G.: The Luzin theorem for higher-order derivatives. Mich. Math. J. 61, 507–516 (2012)

    Article  MathSciNet  Google Scholar 

  21. Imomkulov, S.A., Twice differentiability of subharmonic functions. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 56, 877–888; translation in Russian Acad. Sci. Izv. Math. 41(1993), 157–167 (1992)

  22. Isakov, N.M.: A global property of approximately differentiable functions. Math. Notes Acad. Sci. USSR 41(1987), 280–285 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Kirchheim, B., Kristensen, J.: Differentiability of convex envelopes. C. R. Acad. Sci. Paris Sér. I Math. 333(8), 725–728 (2001)

    Article  MathSciNet  Google Scholar 

  24. Liu, F.-C.: A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26, 645–651 (1977)

    Article  MathSciNet  Google Scholar 

  25. Liu, F.-C., Tai, W.-S.: Approximate Taylor polynomials and differentiation of functions. Topol. Methods Nonlinear Anal. 3(1), 189–196 (1994)

    Article  MathSciNet  Google Scholar 

  26. Moonens, L., Pfeffer, W.F.: The multidimensional Luzin theorem. J. Math. Anal. Appl. 339, 746–752 (2008)

    Article  MathSciNet  Google Scholar 

  27. Michael, J., Ziemer, W.P.: A Lusin type approximation of Sobolev functions by smooth functions. Contemp. Math. 42, 135–167 (1985)

    Article  MathSciNet  Google Scholar 

  28. Roberts, A.W., Varberg, D.E.: Convex functions. Pure and Applied Mathematics, vol. 57. Academic Press, New York (1973)

  29. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36, 63–89 (1934)

    Article  MathSciNet  Google Scholar 

  30. Whitney, H.: On totally differentiable and smooth functions. Pac. J. Math. 1, 143–159 (1951)

    Article  MathSciNet  Google Scholar 

  31. Ziemer, W.P.: Weakly Differentiable Functions. Springer, Berlin (1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Azagra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azagra, D., Hajłasz, P. Lusin-Type Properties of Convex Functions and Convex Bodies. J Geom Anal 31, 11685–11701 (2021). https://doi.org/10.1007/s12220-021-00696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00696-z

Keywords

Mathematics Subject Classification

Navigation