Skip to main content
Log in

Geometric Invariants of Spectrum of the Navier–Lamé Operator

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For a compact connected Riemannian n-manifold \((\Omega ,g)\) with smooth boundary, we explicitly calculate the first two coefficients \(a_0\) and \(a_1\) of the asymptotic expansion of \(\sum _{k=1}^\infty \mathrm{{e}}^{-t \tau _k^{\mp }}= a_0t^{-n/2} {\mp } a_1 t^{-(n-1)/2} +O(t^{1-n/2})\) as \(t\rightarrow 0^+\), where \(\tau ^-_k\) (respectively, \(\tau ^+_k\)) is the k-th Navier–Lamé eigenvalue on \(\Omega \) with Dirichlet (respectively, Neumann) boundary condition. These two coefficients provide precise information for the volume of the elastic body \(\Omega \) and the surface area of the boundary \(\partial \Omega \) in terms of the spectrum of the Navier–Lamé operator. This gives an answer to an interesting and open problem mentioned by Avramidi in (Non-Laplace type operators on manifolds with boundary, analysis, geometry and topology of elliptic operators. World Sci. Publ., Hackensack, pp. 107–140, 2006). As an application, we show that an n-dimensional ball is uniquely determined by its Navier–Lamé spectrum among all bounded elastic bodies with smooth boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.: Complex Analysis, 3rd edn. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  2. Artin, E.: Galois Theory. Notre Dame Univ., Indiana (1942)

  3. Ashbaugh, M.S., Gesztesy, F., Mitrea, M., Teschl, G.: Spectral theory for perturbed Krein Laplacians in nonsmooth domains. Adv. Math. 223, 1372–1467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avramidi, I.G.: A method for calculating the heat kernel for manifolds with boundary. Yadernaya Fizika, 56, 245–252 (1993) [Russian]; Phys. Atomic Nucleus, 56, 138–142 (1993) [English]

  5. Avramidi, I.G.: Heat Kernel and Quantum Gravity. Lecture Notes in Physics, New Series m: Monographs, vol. 64. Springer-Verlag, Berlin (2000)

  6. Avramidi, I.G.: Heat kernel approach in quantum field theory. Nucl. Phys. Proc. Suppl. 104, 3–32 (2002)

    Article  MathSciNet  Google Scholar 

  7. Avramidi, I.G.: Matrix general relativity: a new look at old problems. Class. Quant. Grav. 21, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Avramidi, I.G.: Gauged gravity via spectral asymptotics of non-Laplace type operators. J. High Energy Phys. 07, 030 (2004)

    Article  MathSciNet  Google Scholar 

  9. Avramidi, I.G.: Dirac operator in matrix geometry. Int. J. Geom. Methods Mod. Phys. 2, 227–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Avramidi, I.G.: Non-Laplace type operators on manifolds with boundary, analysis, geometry and topology of elliptic operators, pp. 107–140. World Sci. Publ, Hackensack (2006)

    Book  MATH  Google Scholar 

  11. Bantle, A.: Efficient implementation of the collocation method for the Navier–Lamé equation, June (2010)

  12. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer-Verlag, Berlin (1992)

    Book  MATH  Google Scholar 

  13. Branson, T.P., Gilkey, P.B.: The asymptotics of the Laplacian on a manifold with boundary. Comm. Partial Diff. Equ. 15, 245–272 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Branson, T., Gilkey, P., Kirsten, K., Vassilevich, D.: Heat kernel asymptotics with mixed boundary conditions. Nucl. Phys. B 563, 603–626 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Browder, F.E. :On the spectral theory of elliptic differential operators I. Math. Ann. 142, 22–130 (1960/61)

  16. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, London (1984)

    MATH  Google Scholar 

  17. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. American Mathematical Society/Science Press, Beijing/Providence (2006)

    Book  MATH  Google Scholar 

  18. Cook, D.M.: The Theory of the Electromagnetic Field. Courier Dover Publications, Mineola (2002)

    Google Scholar 

  19. Edwards, H.M.: Galois Theory. Springer-Verlag, New York (1984)

    MATH  Google Scholar 

  20. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  21. Feller, W.: An Introduction to Probability Theory and its Applications, Vol. I. Third Edition, John Wiley & Sons, Inc., New York-London-Sydney (1968)

  22. Friedman, A.: Partial Diferential Equations of Parabolic Type. Prentice Hall, Englewood Cliff (1964)

    Google Scholar 

  23. Gilkey, P.: The spectral geometry of a Riemannian manifold. J. Differ. Geom. 10, 601–618 (1975)

    MathSciNet  MATH  Google Scholar 

  24. Gilkey, P.: Recursion relations and the asymptotic behavior of the eigenvalues of the Laplacian. Compos. Math. 38, 201–240 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Gilkey, P.: Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  26. Gimperlein, H., Grubb, G.: Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators. J. Evol. Eq. 14, 49–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Greiner, P.: An asymptotic expansion for the heat equation. Arch. Rational Mech. Anal. 41, 163–218 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  28. Griffiths, D.: Introduction to Electrodynamics, 3rd edn, pp. 559–562. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  29. Grubb, G.: Functional Calculus of Pseudo-differential Boundary Problems. Birkhäuser, Boston (1986)

    Book  MATH  Google Scholar 

  30. Grubb, G.: Distributions and Operators, Graduate Texts in Mathematics, vol. 252. Springer, New York (2009)

    Google Scholar 

  31. Gurtin, M.: The linear theory of elasticity. In: Truesdell, C. (ed.) Handbuch der Physik. VI. Springer-Verlag, New York (1972)

    Google Scholar 

  32. Hook, S.M.: Domain independent upper bounds for eigenvalues of elliptic operator. Trans. Am. Math. Soc. 318, 615–642 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hörmander, L.: The Analysis of Partial Differential Operators III. Springer-Verlag, Berlin, Heidelberg, New York (1985)

    MATH  Google Scholar 

  34. Hörmander, L.: The Analysis of Partial Differential Operators IV. Springer-Verlag, Berlin, Heidelberg, New York (1985)

    MATH  Google Scholar 

  35. Kac, M.: Can one hear the shape of a drum?, Amer. Math. Monthly (Slaught Mem. Papers, no. 11), 73(4), 1–23 (1966)

  36. Kawohl, B.: Remarks on some old and current eigenvalue problems. In: A. Alvino, E. Fabes and G. Talenti (eds.). Partial Differential Equations of Elliptc Type. Cambridge University Press, Cambridge, pp. 165–183 (1994)

  37. Kawohl, B., Sweers, G.: Remarks on eigenvalues and eigenfunctions of a special elliptic system. J. Appl. Math. Phys. (ZAMP) 38, 730–740 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kawohl, B., Levine, H., Velte, W.: Bucklinf eigenvalues for a clamped plate embedded in an elastic medium and related questions. SIAM J. Math. Anal. 24, 327–340 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kirsten, K.: The \(a_5\) heat kernel coefficient on a manifold with boundary. Class. Quant. Grav. 15, L5–L12 (1998)

    Article  MATH  Google Scholar 

  40. Kirsten, K.: Spectral Functions in Mathematics and Physics. CRC Press, Boca Raton (2001)

    Book  MATH  Google Scholar 

  41. Kohn, J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18, 269–305 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  42. Korevaar, J.: Tauberian Theory: A Century of Developments. Springer-Verlag, Berlin, Heidelberg (2004)

    Book  MATH  Google Scholar 

  43. Landau, L., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Butterworth Heinemann, Oxford (1986)

    MATH  Google Scholar 

  44. Laptev, A.: Dirichlet and Neumann Eigenvalue Problems on Domainsin Euclidean Spaces. J. Funct. Anal. 151, 531–545 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lee, J., Uhlmann, G.: Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42, 1097–1112 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, G.-Q.: The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian manifolds. Adv. Math. 228, 2162–2217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, G.-Q.: Spectral invariants of the Stokes problem, arXiv:1410.4279 [math.AP], 2014, to appear in Math. Ann.

  48. Liu, G.-Q.: Heat invariants of the perturbed polyharmonic Steklov problem, arXiv:1405.3350 [math.AP] (2014)

  49. Liu, G.-Q.: Asymptotic expansion of the trace of the heat kernel associated to the Dirichlet-to-Neumann operator. J. Differ. Equ. 259, 2499–2545 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, G.-Q.: Determination of isometric real-analytic metric and spectral invariants for elastic Dirichlet-to-Neumann map on Riemannian manifolds, arXiv: 1908.05096v2 [math.AP]

  51. Liu, G.-Q.: Determining anisotropic real-analytic metric from boundary electromagnetic information, arXiv: 1909.12803v2 [math.AP]

  52. Lorentz, G.G.: Beweis des Gausschen Intergralsatzes. Math. Z. 51, 61–81 (1949)

    Google Scholar 

  53. McKean, H., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43–69 (1967)

    MathSciNet  MATH  Google Scholar 

  54. Minakshisundaram, S.: Eigenfunctions on Riemanniun manifolds. J. Indian Math. Soc. 17, 158–165 (1953)

    Google Scholar 

  55. Morrey, C.: On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. Am. J. Math. 80, 198–218 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  56. Morrey, C.: On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. Am. J. Math. 80, 219–237 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  57. Morrey, C.: Multiple Integrals in the Calculus of Variations. Springer-Verlag, New York (1966)

    Book  MATH  Google Scholar 

  58. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  59. Pleijel, A.: Proprietés asymptotique des fonctions fondamentales du problems des vibrations dans un corps élastique. Ark. Mat. Astron. Fys. 26, 1–9 (1939)

    MATH  Google Scholar 

  60. Polterovich, I., Sher, D.: Heat invariants of the Steklov problem. J. Geom. Anal. 25(2), 924–950 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Seeley, R.: Complex powers of an elliptic operator. Proc. Symp. Pure Math. 10, 288–307 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  62. Seeley, R.: The resolvent of an elliptic boundary value problem. Am. J. Math. 91, 889–920 (1969)

    Article  MATH  Google Scholar 

  63. Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhauser, Basel (2002)

    Book  MATH  Google Scholar 

  64. Sommerfeld, A.: Mechanics of Deformable Bodies. Academic Press, New York (1964)

    Google Scholar 

  65. Stewart, H.B.: Generation of analytic semigroups by strongly elliptic operators. Trans. Am. Math. Soc. 199, 141–161 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  66. Stratton, J.A.: Electromagnetic Theory. McGraw-Hill Book Company, New York (1941)

    MATH  Google Scholar 

  67. Taylor, M.E.: Partial Differential Equations I, 2nd Edition, Appl. Math. Sci., vol. 115, Springer Science+Business Media, LLC 1996 (2011)

  68. Taylor, M.E.: Partial Differential Equations II, 2nd Edition, Appl. Math. Sci., vol. 116, Springer Science+Business Media, LLC 1996 (2011)

  69. Vassilevich, D.: Heat kernel expansion: user’s manual. Phys. Rept. 388, 279–360 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  70. Weyl, H.: Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung. J. Reine Angew. Math. 141, 1–11 (1912)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by NNSF of China (11671033/A010802) and NNSF of China (11171023/A010801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genqian Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G. Geometric Invariants of Spectrum of the Navier–Lamé Operator. J Geom Anal 31, 10164–10193 (2021). https://doi.org/10.1007/s12220-021-00639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00639-8

Keywords

Mathematics Subject Classification

Navigation