Skip to main content
Log in

Travel Time Tomography in Stationary Spacetimes

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the boundary rigidity problem on a cylindrical domain in \({\mathbb {R}}^{1+n}\), \(n\ge 2\), equipped with a stationary (time-invariant) Lorentzian metric. We show that the time separation function between pairs of points on the boundary of the cylindrical domain determines the stationary spacetime, up to some time-invariant diffeomorphism, assuming that the metric satisfies some a-priori conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexakis, S., Ionescu, A.D., Klainerman, S.: Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces. Commun. Math. Phys. 299, 89127 (2010)

    Article  MathSciNet  Google Scholar 

  2. Anderson, M.T.: On stationary vacuum solutions to the Einstein equations. Annales Henri Poincare 1, 977–994 (2000)

    Article  MathSciNet  Google Scholar 

  3. Andersson, L., Dahl, M., Howard, R.: Boundary and lens rigidity of Lorentzian surfaces. Trans. Am. Math. Soc. 348, 2307–2329 (1996)

    Article  MathSciNet  Google Scholar 

  4. Burago, D., Ivanov, S.: Boundary rigidity and filling volume minimality of metrics close to a flat one. Ann. Math. 171, 1183–1211 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chruściel, P.T., Lopes Costa, J.: On uniqueness of stationary vacuum black holes. Astérisque 321, 195–265 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Chruściel, P.T., Lopes Costa, J., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relat. 15, 7 (2012)

    Article  Google Scholar 

  7. Droste, J.: The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Proc. R. Neth. Acad. Arts Sci. 19, 197–215 (1917)

    Google Scholar 

  8. Einstein, A.: Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin 844–847 (1915)

  9. Einstein, A.: The foundation of the general theory of relativity. Annalen der Physik. 354, 769 (1916)

    Article  Google Scholar 

  10. Feizmohammadi, A., Ilmavirta, J., Kian, Y., Oksanen, L.: Recovery of time dependent coefficients from boundary data for hyperbolic equations. arXiv preprint (2019)

  11. Feizmohammadi, A., Ilmavirta, J., Oksanen, L.: The light ray transform in stationary and static Lorentzian geometries. J. Geom. Anal. (2020). https://doi.org/10.1007/s12220-020-00409-y

  12. Frigyik, B., Stefanov, P., Uhlmann, G.: The X-ray transform for a generic family of curves and weights. J. Geom. Anal. 18, 89–108 (2008)

    Article  MathSciNet  Google Scholar 

  13. Herglotz, G.: Über die Elastizität der Erde bei Berücksichtigung ihrer variablen Dichte. Zeitschr. für Math. Phys. 52, 275–299 (1905)

    MATH  Google Scholar 

  14. Hintz, P., Uhlmann, G.: Reconstruction of Lorentzian manifolds from boundary light observation sets. Int. Math. Res. Not. 2019, 6949–6987 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hollands, S., Ishibashi, A., Wald, R.: A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699–722 (2007)

    Article  MathSciNet  Google Scholar 

  16. Ionescu, A.D., Klainerman, S.: On the uniqueness of smooth, stationary black holes in vacuum. Invent. Math. 175, 35102 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  MathSciNet  Google Scholar 

  18. Kurylev, Y., Lassas, M., Uhlmann, G.: Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations. Invent. Math. 212, 781–857 (2018)

    Article  MathSciNet  Google Scholar 

  19. Lai, R.-Y., Shankar, R., Spirn, D., Uhlmann, G.: An inverse problem from condense matter physics. Inverse Probl. 33(11), 115011 (2017)

    Article  Google Scholar 

  20. Lai, R.-Y., Zhou, H.: Unique determination for an inverse problem from the vortex dynamics. Inverse Probl. 37, 025001 (2021)

    Article  MathSciNet  Google Scholar 

  21. Lassas, M., Oksanen, L., Stefanov, P., Uhlmann, G.: On the inverse problem of finding cosmic strings and other topological defects. Commun. Math. Phys. 357, 569–595 (2018)

    Article  MathSciNet  Google Scholar 

  22. Lassas, M., Oksanen, L., Stefanov, P., Uhlmann, G.: The light ray transform on Lorentzian manifolds, preprint. arXiv:1907.02210

  23. Lassas, M., Oksanen, L., Yang, Y.: Determination of the spacetime from local time measurements. Math. Ann. 365, 271–307 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lassas, M., Sharafutdinov, V., Uhlmann, G.: Semiglobal boundary rigidity for Riemannian metrics. Math. Ann. 325, 767–793 (2003)

    Article  MathSciNet  Google Scholar 

  25. Mars, M., Reiris, M.: Global and uniqueness properties of stationary and static spacetimes with outer trapped surfaces. Commun. Math. Phys. 322, 633666 (2013)

    Article  MathSciNet  Google Scholar 

  26. Michel, R.: Sur la rigidité imposée par la longueur des géodésiques. Invent. Math. 65, 71–83 (1981)

    Article  MathSciNet  Google Scholar 

  27. O’Neill, B.: Semi-Riemannain geometry with applications to relativity. Academic Press, New York (1990)

    Google Scholar 

  28. Paternain, G., Salo, M., Uhlmann, G., Zhou, H.: The geodesic X-ray transform with matrix weights. Am. J. Math. 141, 1707–1750 (2019)

    Article  MathSciNet  Google Scholar 

  29. Paternain, G.P., Uhlmann, G., Zhou, H.: Lens rigidity for a particle in a yang-mills field. Commun. Math. Phys. 366, 681–707 (2019)

    Article  MathSciNet  Google Scholar 

  30. Pestov, L., Uhlmann, G.: Two dimensional simple Riemannian manifolds with boundary are boundary distance rigid. Ann. Math. 161, 1093–1110 (2005)

    Article  MathSciNet  Google Scholar 

  31. Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften. 7, 189–196 (1916)

    MATH  Google Scholar 

  32. Stefanov, P.: Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials. Math. Z. 201, 541–559 (1989)

    Article  MathSciNet  Google Scholar 

  33. Stefanov, P.: Support theorems for the light ray transform on analytic Lorentzian manifolds. Proc. Am. Math. Soc. 145, 1259–1274 (2017)

    Article  MathSciNet  Google Scholar 

  34. Stefanov, P., Uhlmann, G.: Inverse backscattering for the acoustic equation. SIAM J. Math. Anal. 28, 1191–1204 (1997)

    Article  MathSciNet  Google Scholar 

  35. Stefanov, P., Uhlmann, G.: Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media. J. Funct. Anal. 154, 330–358 (1998)

    Article  MathSciNet  Google Scholar 

  36. Stefanov, P., Uhlmann, G.: Rigidity for metrics with the same lengths of geodesics. Math. Res. Lett. 5, 83–96 (1998)

    Article  MathSciNet  Google Scholar 

  37. Stefanov, P., Uhlmann, G.: Boundary rigidity and stability for generic simple metrics. J. Am. Math. Soc. 18, 975–1003 (2005)

    Article  MathSciNet  Google Scholar 

  38. Stefanov, P., Uhlmann, G., Vasy, A.: Boundary rigidity with partial data. J. Am. Math. Soc. 29, 299–332 (2016)

    Article  MathSciNet  Google Scholar 

  39. Stefanov, P., Uhlmann, G., Vasy, A.: Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge, preprint. arXiv:1702.03638

  40. Stefanov, P., Uhlmann, G., Vasy, A., Zhou, H.: Travel time tomography. Acta. Math. Sin. Engl. Ser. 35, 1085–1114 (2019)

    Article  MathSciNet  Google Scholar 

  41. Strohmaier, A., Zelditch, S.: A Gutzwiller trace formula for stationary space-times. Adv. Math. https://doi.org/10.1016/j.aim.2020.107434

  42. Wang, J.: Stability for the reconstruction of a Riemannian metric by boundary measurements. Inverse Probl. 15, 1177–1192 (1999)

    Article  MathSciNet  Google Scholar 

  43. Wang, Y.: Parametrices for the light ray transform on Minkowski spacetime. Inverse Probl. Imaging 12(1), 229237 (2018)

    MathSciNet  Google Scholar 

  44. Wiechert, E., Zoeppritz, K.: Über Erdbebenwellen, Nachr. Koenigl. Geselschaft Wiss, Goettingen, 4 (1907), 415–549

  45. Zhou, H.: Generic injectivity and stability of inverse problems for connections. Commun. PDE 42, 780–801 (2017)

    Article  MathSciNet  Google Scholar 

  46. Zhou, H.: Lens rigidity with partial data in the presence of a magnetic field. Inverse Probl. Imaging 12, 1365–1387 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

GU was partly supported by NSF, a Walker Family Endowed Professorship at UW and a Si-Yuan Professorship at HKUST. YY was partly supported by NSF grant DMS-1715178, DMS-2006881, and start-up fund from MSU. The authors are grateful to the referees for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanming Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhlmann, G., Yang, Y. & Zhou, H. Travel Time Tomography in Stationary Spacetimes. J Geom Anal 31, 9573–9596 (2021). https://doi.org/10.1007/s12220-021-00620-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00620-5

Keywords

Mathematics Subject Classification

Navigation