Skip to main content
Log in

Hardy Spaces for Boundary Value Problems of Elliptic Systems with Block Structure

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We present recent results on elliptic boundary value problems where the theory of Hardy spaces associated with operators plays a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As usual, the notation \({\text {C}}_0([0,\infty ))\) means continuity and limit 0 at infinity.

  2. The constant is chosen via Hardy–Sobolev embeddings such that \(f\in {\text {L}}^{p^*}\).

References

  1. Amenta, A., Auscher, P.: Elliptic Boundary Value Problems with Fractional Regularity Data. The First Order Approach, volume 37 of CRM Monograph Series. American Mathematical Society, Providence, RI (2018)

    Book  Google Scholar 

  2. Auscher, P., Axelsson, A.: Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I. Invent. Math. 184(1), 47–115 (2011)

    Article  MathSciNet  Google Scholar 

  3. Auscher, P.,Egert, M.: Boundary value problems and Hardy spaces for elliptic systems with block structure. https://hal.archives-ouvertes.fr/hal-03037758

  4. Auscher, P., Mourgoglou, M.: Representation and uniqueness for boundary value elliptic problems via first order systems. Rev. Mat. Iberoam. 35(1), 241–315 (2019)

    Article  MathSciNet  Google Scholar 

  5. Auscher, P., Russ, E.: Hardy spaces on strongly Lipschitz domains and elliptic operators. J. Funct. Anal. 201, 148–184 (2003)

    Article  MathSciNet  Google Scholar 

  6. Auscher, P., Stahlhut, S.: Functional calculus for first order systems of Dirac type and boundary value problems. Mém. Soc. Math. Fr. (N.S.), (144) (2016)

  7. Auscher, P., Tchamitchian, P.: Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux). Ann. Inst. Fourier (Grenoble) 45(3), 721–778 (1995)

    Article  MathSciNet  Google Scholar 

  8. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on \(\mathbb{R}^n\). Ann. Math. (2) 156(2), 633–654 (2002)

    Article  MathSciNet  Google Scholar 

  9. Auscher, P., Duong, X.T.,McIntosh, A.: Square function estimates, functional calculi on \(L^p\) spaces and Hardy spaces, unpublished manuscript, (2004)

  10. Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18(1), 192–248 (2008)

    Article  MathSciNet  Google Scholar 

  11. Auscher, P., McIntosh, A., Mourgoglou, M.: On \(L^2\) solvability of BVPs for elliptic systems. J. Fourier Anal. Appl. 19(3), 478–494 (2013)

    Article  MathSciNet  Google Scholar 

  12. Auscher, P., Egert, M., Nyström, K.: The Dirichlet problem for parabolic operators in divergence form. J. Ecole. Polytechnique 5, 407–441 (2018)

    Article  MathSciNet  Google Scholar 

  13. Auscher, P., Egert, M., Nyström, K.: \(L^2\) well-posedness of boundary value problems for parabolic systems with measurable coefficients. J. Eur. Math. Soc. 22(9), 2943–3058 (2020)

    Article  MathSciNet  Google Scholar 

  14. Axelsson, A., Keith, S., McIntosh, A.: Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math. 163(3), 455–497 (2006)

    Article  MathSciNet  Google Scholar 

  15. Bernicot, F., Zhao, J.: New abstract Hardy spaces. J. Funct. Anal. 255(7), 1761–1796 (2008)

    Article  MathSciNet  Google Scholar 

  16. Calderón, A.P.: On the behaviour of harmonic functions at the boundary. Trans. Am. Math. Soc. 68, 47–54 (1950)

    Article  MathSciNet  Google Scholar 

  17. Chang, D.-C., Krantz, S.G., Stein, E.M.: \(H^p\) theory on a smooth domain in \({\mathbb{R}}^N\) and elliptic boundary value problems. J. Funct. Anal. 114, 286–347 (1993)

    Article  MathSciNet  Google Scholar 

  18. Coifman, R.: A real-variable characterization of \(H^p\). Studia Math. 51, 269–274 (1974)

    Article  MathSciNet  Google Scholar 

  19. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  Google Scholar 

  20. Coifman, R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62(2), 304–335 (1985)

    Article  MathSciNet  Google Scholar 

  21. Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded \(H^\infty \) functional calculus. J. Austral. Math. Soc. Ser. A 60(1), 51–89 (1996)

    Article  MathSciNet  Google Scholar 

  22. Dahlberg, B.E.J.: Estimates of harmonic measure. Arch. Rational Mech. Anal. 65(3), 275–288 (1977)

    Article  MathSciNet  Google Scholar 

  23. Dziubański, J., Zienkiewicz, J.: Hardy space \({\rm H}^1\) associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoamericana 15(2), 279–296 (1999)

    Article  MathSciNet  Google Scholar 

  24. Dziubański, J., Zienkiewicz, J.: \({\rm H}^p\) spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. 98(1), 5–38 (2003)

    Article  MathSciNet  Google Scholar 

  25. Dziubański, J., Zienkiewicz, J.: Hardy spaces \({\rm H}^1\) for Schrödinger operators with certain potentials. Studia Math. 164(1), 39–53 (2004)

    Article  MathSciNet  Google Scholar 

  26. Fefferman, C., Stein, E.M.: \({\rm H}^p\) spaces of several variables. Acta Math. 129, 137–195 (1972)

    Article  MathSciNet  Google Scholar 

  27. Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344(1), 37–116 (2009)

    Article  MathSciNet  Google Scholar 

  28. Kenig, C.E.: Harmonic Analysis Techniques For Second Order Elliptic Boundary Value Problems. CBMS Regional Conference Series in Mathematics, vol. 83. American Mathematical Society, Providence, RI (1994)

    Book  Google Scholar 

  29. Latter, R.H.: A characterization of \({\rm H}^p({\mathbb{R}}^n)\) in terms of atoms. Studia Math. 62(1), 93–101 (1978)

    Article  MathSciNet  Google Scholar 

  30. Rosén, A.: Layer potentials beyond singular integral operators. Publ. Mat. 57(2), 429–454 (2013a)

    Article  MathSciNet  Google Scholar 

  31. Rosén, A.: Square function and maximal function estimates for operators beyond divergence form equations. J. Evol. Equ. 13, 651–674 (2013b)

    Article  MathSciNet  Google Scholar 

  32. Stein, E.M.: Singular Integrals and Differentiability of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  33. Stein, E.M., Weiss, G.: On the theory of \(H^p\) spaces. Acta. Math. 103, 25–62 (1960)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Auscher.

Additional information

In the honor of Guido Weiss’ ninetieth birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were supported by the ANR project RAGE ANR-18-CE40-0012. This material is based upon work that got started under NSF Grant DMS-1440140 while Auscher was in residence at the MSRI in Berkeley, California, during the Spring 2017 semester. Egert also thanks this institute for hospitality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auscher, P., Egert, M. Hardy Spaces for Boundary Value Problems of Elliptic Systems with Block Structure. J Geom Anal 31, 9182–9198 (2021). https://doi.org/10.1007/s12220-021-00608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00608-1

Keywords

Mathematics Subject Classification

Navigation