Skip to main content
Log in

Curvature Homogeneous Manifolds in Dimension 4

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We classify complete curvature homogeneous metrics on simply connected four-dimensional manifolds which are invariant under a cohomogeneity one action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, A.V., Alekseevsky, D.V.: \(G\)- manifolds with one dimensional orbit space. Ad. Sov. Math. 8, 1–31 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Alexandrino, M., Bettiol, R.: Lie Groups and Geometric Aspects of Isometric Actions. Springer, Cham (2015)

    Book  Google Scholar 

  3. Besse, A.: Einstein Manifolds, Modern Surveys in Math, vol. 10. Springer, New York (1987)

    Book  Google Scholar 

  4. Suresh, A., Boeckx, Kowalski, O., Vanhecke L: Riemannian Manifolds of Conullity Two, p. xviii+300xviii+300. World Scientific Publishing Co., River Edge (1996)

    MATH  Google Scholar 

  5. Brooks, T.: Three dimensional manifolds with constant Ricci eigenvalues \((\lambda ,\lambda ,0)\), in preparation

  6. Ferus, D., Karcher, H., Münzner, H.F.: Clifford algebras and new isoparametric hypersurfaces. Math. Z. 177, 479–502 (1981)

    Article  MathSciNet  Google Scholar 

  7. Grove, K., Ziller, W.: Lifting group actions and nonnegative curvature. Trans. Am. Math. Soc. 363, 2865–2890 (2011)

    Article  MathSciNet  Google Scholar 

  8. Grove, K., Verdiani, L., Ziller, W.: An exotic \(T_1{\mathbb{S}}^4\) with positive curvature. Geom. Funct. Anal. 21, 499–524 (2011)

    Article  MathSciNet  Google Scholar 

  9. Lax, P.: Linear Algebra and Its Applications, 2nd edn. Wiley-Interscience, New York (2007)

    MATH  Google Scholar 

  10. Parker, J.: \(4\)-dimensional \({G}\)-manifolds with \(3\)-dimensional orbits. Pac. J. Math. 125, 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  11. Sekigawa, K.: On the Riemannian manifolds of the form \(B_f \times F^n\), Kodai Math. Sem. Rep. 26, 343–347 (1974/75)

  12. Takagi, H.: On curvature homogeneity of Riemannian manifolds. Tohoku Math. J. 26, 581–585 (1974)

    Article  MathSciNet  Google Scholar 

  13. Singer, I.M.: Infnitesimally homogeneous spaces. Commun. Pure Appl. Math. 13, 685–697 (1960)

    Article  Google Scholar 

  14. Tsukada, K.: Curvature homogeneous hypersurfaces immersed in a real space form. Tohoku Math. J. 40, 221–244 (1988)

    Article  MathSciNet  Google Scholar 

  15. Tricerri, F., Vanhecke, L.: Curvature homogeneous Riemannian manifolds. Ann. Sci. Ec. Norm. Sup. 22, 535–554 (1989)

    Article  MathSciNet  Google Scholar 

  16. Kowalski, O., Tricerri, F., Vanhecke, L.: Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl. 71, 471–501 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Verdiani, L.: Curvature homogeneous metrics of cohomogeneity one. Riv. Mat. Univ. Parma 6, 179–200 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Verdiani, L., Ziller, W.: Smoothness conditions in cohomogeneity one manifolds. Transf. Groups (2020). https://doi.org/10.1007/s00031-020-09618-9

  19. Ziller, W.: On the geometry of cohomogeneity one manifolds with positive curvature, In: Riemannian Topology and Geometric Structures on Manifolds, in honor of Charles P.Boyer’s 65th birthday, Progress in Mathematics 271, 233–262 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ziller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first named author was supported by Prin and GNSAGA grants. The second named author was supported by a grant from the National Science Foundation and by a fellowship from CNPq to support his visit at IMPA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdiani, L., Ziller, W. Curvature Homogeneous Manifolds in Dimension 4. J Geom Anal 31, 8036–8062 (2021). https://doi.org/10.1007/s12220-020-00566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00566-0

Keywords

Navigation