Skip to main content
Log in

Compact Hermitian Symmetric Spaces, Coadjoint Orbits, and the Dynamical Stability of the Ricci Flow

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Using a stability criterion due to Kröncke, we show, providing \({n\ne 2k}\), the Kähler–Einstein metric on the Grassmannian \(Gr_{k}(\mathbb {C}^{n})\) of complex k-planes in an n-dimensional complex vector space is dynamically unstable as a fixed point of the Ricci flow. This generalises the recent results of Kröncke and Knopf–Sesum on the instability of the Fubini–Study metric on \(\mathbb {CP}^{n}\) for \(n>1\). The key to the proof is using the description of Grassmannians as certain coadjoint orbits of SU(n). We are also able to prove that Kröncke’s method will not work on any of the other compact, irreducible, Hermitian symmetric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berline, N., Vergne, M.: Fourier transforms of orbits of the coadjoint representation. Representation Theory of Reductive Groups (Park City, Utah: vol. 40 of Progress in Mathematics), pp. 53–67. Birkhäuser, Boston (1982)

    Google Scholar 

  2. Besse, A.L.: Einstein Manifolds. Classics in Mathematics. Springer, Berlin (2008). Reprint of the 1987 edition

    Google Scholar 

  3. Bott, R.: The geometry and representation theory of compact Lie groups. In: Luke, G.L., (ed.) Proceedings of the SRC/LMS Research Symposium held in Oxford, June 28–July 15, 1977 (1979), vol. 34 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, pp. v+341

  4. Cao, H.D., Hamilton, R., Ilmanen, T.: Gaussian Densities and Stability for Some Ricci Solitons (2004). preprint, arXiv:math/0404165 [math.DG]

  5. Cao, H.-D., He, C.: Linear stability of Perelman’s \(\nu \)-entropy on symmetric spaces of compact type. J. Reine Angew. Math. 709, 229–246 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Cao, H.-D., Zhu, M.: On second variation of Perelman’s Ricci shrinker entropy. Math. Ann. 353(3), 747–763 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chow, B.: The Ricci flow on the \(2\)-sphere. J. Differ. Geom. 33(2), 325–334 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Coxeter, H.S.M.: The product of the generators of a finite group generated by reflections. Duke Math. J. 18, 765–782 (1951)

    Article  MathSciNet  Google Scholar 

  9. Duistermaat, J., Heckman, G.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–269 (1982)

    Article  MathSciNet  Google Scholar 

  10. Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics, vol. 129. Springer, New York (1991). A first course, Readings in Mathematics

    Google Scholar 

  11. Gasqui, J., Goldschmidt, H.: Radon Transforms and the Rigidity of the Grassmannians. Annals of Mathematics Studies, vol. 156. Princeton University Press, Princeton (2004)

    MATH  Google Scholar 

  12. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley, New York (1978)

    MATH  Google Scholar 

  13. Hall, S.J.: The canonical Einstein metric on \({G}_{2}\) is dynamically unstable under the Ricci flow. Bull. Lond. Math. Soc. 51(3), 399–405 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hall, S.J., Murphy, T.: On the linear stability of Kähler–Ricci solitons. Proc. Am. Math. Soc. 139(9), 3327–3337 (2011)

    Article  Google Scholar 

  15. Hall, S.J., Murphy, T.: Variation of complex structures and the stability of Kähler–Ricci solitons. Pac. J. Math. 265(2), 441–454 (2013)

    Article  Google Scholar 

  16. Hall, S.J., Murphy, T.: On the spectrum of the Page and the Chen–LeBrun–Weber metrics. Ann. Glob. Anal. Geom. 46(1), 87–101 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hamilton, R.S.: The Ricci flow on surfaces. In: Aswi, A. (ed.) Mathematics and General Relativity. Contemporary Mathematics, vol. 1988, pp. 237–262. American Mathematics of Society, Providence (1986). (Santa Cruz, CA, : vol. 71 of

    Google Scholar 

  18. Haslhofer, R., Müller, R.: Dynamical stability and instability of Ricci-flat metrics. Math. Ann. 360(1–2), 547–553 (2014)

    Article  MathSciNet  Google Scholar 

  19. Humphreys, J.E.: Introduction to Lie algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1978). Second printing, revised

    MATH  Google Scholar 

  20. Isenberg, J., Knopf, D., Šešum, N.: Non-Kähler Ricci flow singularities modeled on Kähler–Ricci solitons. Pure Appl. Math. Q. 15(2), 749–784 (2019)

    Article  MathSciNet  Google Scholar 

  21. Kirillov, A.A.: Merits and demerits of the orbit method. Bull. Am. Math. Soc. 36(4), 433–488 (1999)

    Article  MathSciNet  Google Scholar 

  22. Knopf, D., Šešum, N.: Dynamic instability of \(\mathbb{CP}^{N}\) under Ricci flow. J. Geom. Anal. 29(1), 902–916 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kröncke, K.: Stability and instability of Ricci solitons. Calc. Var. Partial Differ. Equ. 53(1–2), 265–287 (2015)

    Article  MathSciNet  Google Scholar 

  24. Kröncke, K.: Stability of Einstein metrics under Ricci flow. Commun. Anal. Geom. 28(2), 351–394 (2020)

    Article  MathSciNet  Google Scholar 

  25. Matsushima, Y.: Remarks on Kähler–Einstein manifolds. Nagoya Math. J. 46, 161–173 (1972)

    Article  MathSciNet  Google Scholar 

  26. Máximo, D.: On the blow-up of four-dimensional Ricci flow singularities. J. Reine Angew. Math. 692, 153–171 (2014)

    MathSciNet  MATH  Google Scholar 

  27. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, New York (1998)

    MATH  Google Scholar 

  28. Paradan, P.-E.: The Fourier transform of semi-simple coadjoint orbits. J. Funct. Anal. 163(1), 152–179 (1999)

    Article  MathSciNet  Google Scholar 

  29. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). preprint, arXiv:math/0211159 [math.DG]

  30. Rossmann, W.: Kirillov’s character formula for reductive Lie groups. Invent. Math. 48(3), 207–220 (1978)

    Article  MathSciNet  Google Scholar 

  31. Sesum, N.: Linear and dynamical stability of Ricci-flat metrics. Duke Math. J. 133(1), 1–26 (2006)

    Article  MathSciNet  Google Scholar 

  32. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  Google Scholar 

  33. Tian, G., Zhu, X.: Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Murphy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, S.J., Murphy, T. & Waldron, J. Compact Hermitian Symmetric Spaces, Coadjoint Orbits, and the Dynamical Stability of the Ricci Flow. J Geom Anal 31, 6195–6218 (2021). https://doi.org/10.1007/s12220-020-00524-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00524-w

Keywords

Navigation