Ahag, P., Cegrell, U., Kołodziej, S., Hiep, Pham Hoang, Zeriahi, A.: Partial pluricomplex energy and integrability exponents of plurisubharmonic functions. Adv. Math. 222, 2036–2058 (2009)
MathSciNet
Article
Google Scholar
Berndtsson, B.: The openness conjecture and complex Brunn–Minkowski inequalities. Comp. Geom. Dyn. 10, 29–44 (2015)
MathSciNet
MATH
Google Scholar
de Fernex, T., Ein, L., Mustata, M.: Bounds for log canonical thresholds with applications to birational rigidity. Math. Res. Lett. 10, 219–236 (2003)
MathSciNet
Article
Google Scholar
de Fernex, T., Ein, L., Mustata, M.: Multiplicities and log canonical thresholds. J. Alg. Geom. 13, 603–615 (2004)
MathSciNet
Article
Google Scholar
de Fernex, T., Ein, L., Mustata, M.: Shokurov’s ACC Conjecture for log canonical thresholds on smooth varieties. Duke Math. J. 152(1), 93–114 (2010)
MathSciNet
Article
Google Scholar
Demailly, J.-P.: Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticité. Acta Math. 159, 153–169 (1987)
MathSciNet
Article
Google Scholar
Demailly, J.-P.: Regularization of closed positive currents and Intersection Theory. J. Alg. Geom. 1, 361–409 (1992)
MathSciNet
MATH
Google Scholar
Demailly, J.-P.: Monge-Ampère Operators, Lelong Numbers and Intersection Theory, Complex Analysis and Geometry. University Series in Mathematics. Plenum Press, New-York (1993)
MATH
Google Scholar
Demailly, J.-P.: Complex Analytic and Differential Geometry (2012). http://www-fourier.ujf-grenoble.fr/demailly/books.html
Demailly, J.-P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup 34, 525–556 (2001)
MathSciNet
Article
Google Scholar
Demailly, J.-P., Hiep, P.H.: A sharp lower bound for the log canonical threshold. Acta Math. 212, 1–9 (2014)
MathSciNet
Article
Google Scholar
Guan, Q., Zhou, X.: A proof of Demailly’s strong openness conjecture. Ann. Math. 182, 605–616 (2015)
MathSciNet
Article
Google Scholar
Hacon, C.D., McKernan, J., Xu, C.: ACC for log canonical thresholds. Ann. Math. 180, 523–571 (2014)
MathSciNet
Article
Google Scholar
Hai, L.M., Hiep, P.H., Hung, V.V.: The log canonical threshold of holomorphic functions. Int. J. Math. 23, 8 (2012)
MathSciNet
Article
Google Scholar
Hiep, P.H.: The weighted log canonical threshold. C.R. Acad. Sci. Paris, Ser. I 352, 283–288 (2014)
MathSciNet
Article
Google Scholar
Hiep, P.H.: Continuity properties of certain weighted log canonical thresholds. C.R. Acad. Sci. Paris, Ser. I 355, 34–39 (2017)
MathSciNet
Article
Google Scholar
Hiep, P.H.: Log canonical thresholds and Monge–Ampèere masses. Math. Ann. 370, 555–566 (2018)
MathSciNet
Article
Google Scholar
Hörmander, L.: Notions of Convexity. Birkhäser, Boston (1994)
MATH
Google Scholar
Nowak, K.J.: Some elementary proofs of Puiseux’s theorems. Univ. Iagel. Acta. Math. 38, 279–282 (2000)
MathSciNet
MATH
Google Scholar
Phong, D.H., Sturm, J.: Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions. Ann. Math 152, 277–329 (2000)
MathSciNet
Article
Google Scholar
Skoda, H.: Sous-ensembles analytiques d’ordre fini ou infini dans \({\mathbb{C}}^n\). Bull. Soc. Math. Fr. 100, 353–408 (1972)
Article
Google Scholar