Skip to main content
Log in

Noncommutative Partial Convexity Via \(\Gamma \)-Convexity

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Motivated by classical notions of partial convexity, biconvexity, and bilinear matrix inequalities, we investigate the theory of free sets that are defined by (low degree) noncommutative matrix polynomials with constrained terms. Given a tuple of symmetric polynomials \(\Gamma \), a free set \({{\mathcal {K}}} \) is called \(\Gamma \)-convex if for all \(X\in {{\mathcal {K}}} \) and isometries V satisfying \(V^*\Gamma (X)V=\Gamma (V^*XV)\), we have \(V^*XV\in {{\mathcal {K}}} .\) We establish an Effros–Winkler Hahn–Banach separation theorem for \(\Gamma \)-convex sets; they are delineated by linear pencils in the coordinates of \(\Gamma \) and the variables x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See also the MATLAB toolbox, https://set.kuleuven.be/optec/Software/bmisolver-a-matlab-package-for-solving-optimization-problems-with-bmi-constraints.

  2. Explicitly, if \(X\in {\mathcal {K}}(n)\) and \(Y\in {\mathcal {K}}(m)\), then \(X\oplus Y\in {\mathcal {K}}(n+m);\) if U is a \(n\times n\) unitary, then \(U^*XU=(U^*X_1 U,\dots ,U^*X_{\texttt {g}}U)\in {\mathcal {K}}(n)\); and if \({{\mathcal {K}}} \subset {\mathbb {C}}^n\) is k dimensional reducing subspace for X, then \(X|_{{{\mathcal {K}}} }\in {\mathcal {K}}(k).\)

  3. See for instance the MATLAB toolbox, https://set.kuleuven.be/optec/Software/bmisolver-a-matlab-package-for-solving-optimization-problems-with-bmi-constraints.

References

  1. Agler, J., McCarthy, J.E.: Pick interpolation for free holomorphic functions. Am. J. Math. 137(6), 1685–1701 (2015)

    Article  MathSciNet  Google Scholar 

  2. Balasubramanian, S., McCullough, S.: Quasi-convex free polynomials. Proc. Am. Math. Soc. 142, 2581–2591 (2014)

    Article  MathSciNet  Google Scholar 

  3. Ball, J.A., Marx, G., Vinnikov, V.: Noncommutative reproducing kernel Hilbert spaces. J. Funct. Anal. 271, 1844–1920 (2016)

    Article  MathSciNet  Google Scholar 

  4. Barvinok, A.: A Course in Convexity, Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  5. Blekherman, G., Parrilo, P.A., Thomas, R.R. (eds.): Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Series on Optimization, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2013)

    Google Scholar 

  6. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, vol. 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994)

    Book  Google Scholar 

  7. Choi, M.D., Effros, E.G.: Injectivity and operator spaces. J. Funct. Anal. 24, 156–209 (1977)

    Article  MathSciNet  Google Scholar 

  8. Davidson, K., Kennedy, M.: Noncommutative Choquet theory. Preprint arxiv:1905.08436

  9. Davidson, K.R., Dor-On, A., Shalit, O.M., Solel, B.: Dilations, inclusions of matrix convex sets, and completely positive maps. Int. Math. Res. Not. IMRN 2017, 4069–4130 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Dym, H., Helton, J.W., McCullough, S.: Non-commutative polynomials with convex level slices. Indiana Univ. Math. J. 66, 2071–2135 (2017)

    Article  MathSciNet  Google Scholar 

  11. Effros, E.G., Winkler, S.: Matrix convexity: operator analogues of the bipolar and Hahn–Banach theorems. J. Funct. Anal. 144, 117–152 (1997)

    Article  MathSciNet  Google Scholar 

  12. Evert, E., Helton, J.W.: Arveson extreme points span free spectrahedra. Preprint arxiv:1806.09053

  13. Evert, E.: Matrix convex sets without absolute extreme points. Linear Algebra Appl. 537, 287–301 (2018)

    Article  MathSciNet  Google Scholar 

  14. Fuller, A.H., Hartz, M., Lupini, M.: Boundary representations of operator spaces and compact rectangular matrix convex sets. J. Oper. Theory 79, 139–172 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Hartz, M., Lupini, M.: The classification problem for operator algebraic varieties and their multiplier algebras. Trans. Am. Math. Soc. 370(3), 2161–2180 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hay, D.M., Helton, J.W., Lim, A., McCullough, S.: Non-commutative partial matrix convexity. Indiana Univ. Math. J. 57, 2815–2842 (2008)

    Article  MathSciNet  Google Scholar 

  17. Helton, J.W., McCullough, S.: Every convex free basic semi-algebraic set has an LMI representation. Ann. Math. (2) 176, 979–1013 (2012)

    Article  MathSciNet  Google Scholar 

  18. Helton, J.W., Klep, I., McCullough, S.: The matricial relaxation of a linear matrix inequality. Math. Program. Ser. A 138, 401–445 (2013)

    Article  MathSciNet  Google Scholar 

  19. Helton, J.W., Klep, I., McCullough, S.: The tracial Hahn-Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra. J. Eur. Math. Soc. (JEMS) 19, 1845–1897 (2017)

    Article  MathSciNet  Google Scholar 

  20. Jury, M.T., Klep, I., Mancuso, M.E., McCullough, S., Pascoe, J.E.: Noncommutative partial convex rational functions. Preprint

  21. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Foundations of Free Noncommutative Function Theory, Mathematical Surveys and Monographs, vol. 199. American Mathematical Society, Providence, RI (2014)

    MATH  Google Scholar 

  22. Kanev, S., Scherer, C., Verhaegen, M., De Schutter, B.: Robust output-feedback controller design via local BMI optimization. Autom. J. IFAC 40, 1115–1127 (2004)

    Article  MathSciNet  Google Scholar 

  23. Kriel, T.-L.: An introduction to matrix convex sets and free spectrahedra. Complex Anal. Oper. Theory (2019). https://doi.org/10.1007/s11785-019-00937-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Mancuso, M.E.: Inverse and implicit function theorems for noncommutative functions on operator domains. J. Oper. Theory 83, 101–127 (2020)

  25. Passer, B., Shalit, O.M.: Compressions of compact tuples. Linear Algebra Appl. 564, 264–283 (2019)

    Article  MathSciNet  Google Scholar 

  26. Passer, B., Shalit, O.M., Solel, B.: Minimal and maximal matrix convex sets. J. Funct. Anal. 274, 3197–3253 (2018)

    Article  MathSciNet  Google Scholar 

  27. Paulsen, V.: Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  28. Popa, M., Vinnikov, V.: \(H^2\) spaces of non-commutative functions. Complex Anal. Oper. Theory 12, 945–967 (2018)

    Article  MathSciNet  Google Scholar 

  29. Popescu, G.: Invariant subspaces and operator model theory on noncommutative varieties. Math. Ann. 372, 611–650 (2018)

    Article  MathSciNet  Google Scholar 

  30. Salomon, G., Shalit, O.M., Shamovich, E.: Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball. Trans. Amer. Math. Soc. 370, 8639–8690 (2018)

    Article  MathSciNet  Google Scholar 

  31. VanAntwerp, J.G., Braatz, R.D.: A tutorial on linear and bilinear matrix inequalities. J. Process Control 10, 363–385 (2000)

    Article  Google Scholar 

  32. Zalar, A.: Operator Positivstellensätze for noncommutative polynomials positive on matrix convex sets. J. Math. Anal. Appl. 445, 32–80 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott McCullough.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Jury: Research Supported by NSF Grant DMS-1900364

I. Klep: Supported by the Slovenian Research Agency Grants J1-8132, N1-0057 and P1-0222. Partially supported by the Marsden Fund Council of the Royal Society of New Zealand.

M. E. Mancuso: Research partially supported by NSF Grant DMS-1565243

S. McCullough: Research supported by NSF Grants DMS-1361501 and DMS-1764231

J. E. Pascoe: Partially supported by NSF MSPRF DMS 1606260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jury, M., Klep, I., Mancuso, M.E. et al. Noncommutative Partial Convexity Via \(\Gamma \)-Convexity. J Geom Anal 31, 3137–3160 (2021). https://doi.org/10.1007/s12220-020-00387-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00387-1

Keywords

Mathematics Subject Classification

Navigation