1 Correction to: J Geom Anal (2018) 28:1773–1839 https://doi.org/10.1007/s12220-017-9888-y

Let \(S_\alpha \) denote a finite circular sector of opening angle \(\alpha \in (0,\pi )\) and radius one, and let \(e^{-t \Delta _\alpha }\) denote the heat operator associated to the Dirichlet extension of the Laplacian. Based on recent joint work [2] and [3], we discovered an extra contribution to the variational Polyakov formula in [1] coming from the curved boundary component of the sector. Theorems 3 and 4 of [1] should have an added term \(+\frac{1}{4\pi }\). This calculation will appear in [2]. The corrected statements of these theorems are given below.

Theorem 1

(Theorem 3 [1]) Let \(S_{\pi /2}\subset {\mathbb {R}}^2\) be a circular sector of opening angle \(\pi /2\) and radius one. Then the variational Polyakov formula is

$$\begin{aligned} \left. \frac{\partial }{\partial \gamma } \big (-\log (\det (\Delta _{S_\gamma }))\big )\right| _{\gamma =\pi /2} = \frac{-\gamma _e}{4\pi } + \frac{2}{3 \pi }, \end{aligned}$$

where \(\gamma _e\) is the Euler-Mascheroni constant.

Theorem 2

(Theorem 4 [1]) Let \(0<\alpha < \pi \), and let

$$\begin{aligned} k_{min} = \left\lceil { \frac{-\pi }{2\alpha } }\right\rceil , \text { and } k_{max} = \left\lfloor {\frac{\pi }{2\alpha }}\right\rfloor \text { if } \frac{\pi }{2\alpha } \not \in {\mathbb {Z}}, \text { otherwise } k_{max} = \frac{\pi }{2\alpha } - 1, \end{aligned}$$

and \(W_{\alpha } =\left\{ k \in \left( {\mathbb {Z}}\bigcap \left[ k_{min}, k_{max}\right] \right) {\setminus } \left\{ \frac{\ell \pi }{\alpha } \right\} _{\ell \in {\mathbb {Z}}} \right\} .\) Then

$$\begin{aligned} {{\mathcal {S}}}(\alpha )&:=\frac{\partial }{\partial \gamma } \left. \big (-\log (\det (\Delta _{\gamma }))\big )\right| _{\gamma =\alpha } = \frac{1}{3\pi } + \frac{\pi }{12\alpha ^2} \\&\quad + \sum _{k\in W_{\alpha }} \frac{-2\gamma _e + \log (2) - \log \left( {1-\cos (2k\alpha )}\right) }{4 \pi (1-\cos (2k\alpha ))} \\&\quad - (1-\delta _{\alpha , \frac{\pi }{n}})\ \frac{2}{\alpha } \sin (\pi ^2/\alpha ) \int _{-\infty } ^\infty \frac{\gamma _e + \log (2) - \log (1+\cosh (s))}{16\pi (1+\cosh (s))(\cosh (\pi s /\alpha ) - \cos (\pi ^2/\alpha ))} ds, \end{aligned}$$

where \(n\in {\mathbb {N}}\) is arbitrary and \(\delta _{\alpha , \frac{\pi }{n}}\) denotes the Kronecker delta.

It therefore follows that the list of examples given following Theorem 4 in [1] should be revised accordingly:

  1. (1)

    \(\alpha =\frac{\pi }{4}\), \(W_{\frac{\pi }{4}}= \{-2,\pm 1,\}\), \({{\mathcal {S}}}(\frac{\pi }{4})= \frac{-5\gamma _e}{4\pi } + \frac{\log (2)}{2\pi }+ \frac{5}{3\pi } \sim 0.411167\)

  2. (2)

    \(\alpha =\frac{\pi }{3}\), \(W_{\frac{\pi }{3}}= \{-1,1\}\), \({{\mathcal {S}}}(\frac{\pi }{3})= \frac{13}{12\pi } - \frac{2\gamma _e}{3\pi } + \frac{\log (4/3)}{3\pi } \sim 0.252871\)

  3. (3)

    \(\alpha =\frac{\pi }{2}\), \(W_{\frac{\pi }{2}}=\{-1\}\), \({{\mathcal {S}}}(\frac{\pi }{2})= \frac{-\gamma _e}{4\pi } + \frac{2}{3\pi } \sim 0.166273\).

  4. (4)

    For \(\alpha \in ]\frac{\pi }{2},\pi [\), \(W_{\alpha }=\emptyset \), but \(\sin (\pi ^2/\alpha )\ne 0\). If \(\alpha =\frac{2\pi }{3}\), the integral converges rapidly, and a numerical computation gives an approximate value of 0.0075015. Hence \({{\mathcal {S}}}(\frac{2\pi }{3}) \sim \frac{1}{3\pi } + \frac{3}{16 \pi } + \frac{3}{\pi } (0.0075015) \sim 0.1729498\).

2 Misprint

There is a two missing in Equation (1.3) of [1]. That equation should be:

$$\begin{aligned} \partial _t \log \det (\Delta _{g_t}) = {-\frac{1}{12\pi }} \int _{M} \sigma '(t) \ \text {Scal}_t \ dA_{g_t} + \partial _t \log \text {Area}(M,g_t). \end{aligned}$$