Skip to main content
Log in

Boundary Connected Sum of Escobar Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \((X_1, \bar{g}_1)\) and \((X_2, \bar{g}_2)\) be two compact Riemannian manifolds with boundary \((M_1,g_1)\) and \((M_2,g_2)\), respectively. The Escobar problem consists in prescribing a conformal metric on a compact manifold with boundary with zero scalar curvature in the interior and constant mean curvature of the boundary. The present work is the construction of a connected sum \(X=X_1 \#X_2\) by excising half ball near points on the boundary. The resulting metric on X has zero scalar curvature and a CMC boundary. We fully exploit the non-local aspect of the problem and use new tools developed in recent years to handle such kinds of issues. Our problem is of course a very well-known problem in geometric analysis and that is why we consider it but the results in the present paper can be extended to other more analytical problems involving connected sums of constant fractional curvatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ao, W., Chan, H., DelaTorre, A., Fontelos, M.A., del Mar González, M., Wei, J.: On higher dimensional singularities for the fractional yamabe problem: a non-local mazzeo-pacard program. To appear in Duke Math Journal

  2. Ao, W., Chan, H., del Mar González, M., Wei, J.: Bound state solutions for the supercritical fractional Schrödinger equation. To appear in Nonlinear Analysis

  3. Ao, W., Chan, H., del Mar González, M., Wei, J.: Existence of positive weak solutions for fractional Lane-Emden equations with prescribed singular sets. Calc. Var. Partial Differ. Equ. 57, no. 6, Art. 149 (2018)

  4. Ao, W., DelaTorre, A., del Mar González, M., Wei, J.: A gluing approach for the fractional yamabe problem with prescribed isolated singularities. To appear in Journal für die reine und angewandte Mathematik

  5. Brendle, S., Chen, S.-Y.S.: An existence theorem for the Yamabe problem on manifolds with boundary. J. Eur. Math. Soc. 16(5), 991–1016 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 23–53 (2014)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  8. Case, J.S., Chang, S.-Y.A.: On fractional GJMS operators. Commun. Pure Appl. Math. 69(6), 1017–1061 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chang, S.-Y.A., del Mar González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    Article  MathSciNet  Google Scholar 

  10. del Mar González, M., Mazzeo, R., Sire, Y.: Singular solutions of fractional order conformal Laplacians. J. Geom. Anal. 22(3), 845–863 (2012)

    Article  MathSciNet  Google Scholar 

  11. del Mar González, M.: Recent progress on the fractional laplacian in conformal geometry. In: Palatucci, G., Kuusi, T. (eds.) Recent Developments in Nonlocal Theory, pp. 236–273. De Gruyter, Berlin (2018)

    MATH  Google Scholar 

  12. DelaTorre, A., del Pino, M., del Mar González, M., Wei, J.: Delaunay-type singular solutions for the fractional Yamabe problem. Math. Ann. 369(1–2), 597–626 (2017)

    Article  MathSciNet  Google Scholar 

  13. DelaTorre, A., del Mar González, M.: Isolated singularities for a semilinear equation for the fractional laplacian arising in conformal geometry. Rev. Mat. Iber. 34(4), 1645–1678 (2018)

    Article  MathSciNet  Google Scholar 

  14. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. (2) 136(1), 1–50 (1992)

    Article  MathSciNet  Google Scholar 

  15. Guillarmou, C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1), 1–37 (2005)

    Article  MathSciNet  Google Scholar 

  16. Guillarmou, C., Guillopé, L.: The determinant of the Dirichlet-to-Neumann map for surfaces with boundary. Int. Math. Res. Not. IMRN, (22), Art. ID rnm099, 26 (2007)

  17. Joyce, D.: Constant scalar curvature metrics on connected sums. Int. J. Math. Math. Sci. 7, 405–450 (2003)

    Article  MathSciNet  Google Scholar 

  18. Li, C., Wu, Z., Xu, H.: Maximum principles and bôcher type theorems. Proc Natl Acad Sci 115, 6976–6979 (2018)

    Article  MathSciNet  Google Scholar 

  19. Marques, F.C.: Existence results for the Yamabe problem on manifolds with boundary. Indiana Univ. Math. J. 54(6), 1599–1620 (2005)

    Article  MathSciNet  Google Scholar 

  20. Mayer, M., Ndiaye, C.B.: Barycenter technique and the Riemann mapping problem of Cherrier–Escobar. J. Differ. Geom. 107(3), 519–560 (2017)

    Article  MathSciNet  Google Scholar 

  21. Mazzeo, R.: Elliptic theory of differential edge operators. I. Commun. Partial Differ. Equ. 16(10), 1615–1664 (1991)

    Article  MathSciNet  Google Scholar 

  22. Mazzeo, R., Pacard, F.: A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. J. Differ. Geom. 44(2), 331–370 (1996)

    Article  MathSciNet  Google Scholar 

  23. Mazzeo, R., Pacard, F.: Maskit combinations of Poincaré–Einstein metrics. Adv. Math. 204(2), 379–412 (2006)

    Article  MathSciNet  Google Scholar 

  24. Mazzeo, R., Pollack, D., Uhlenbeck, K.: Connected sum constructions for constant scalar curvature metrics. Topol. Methods Nonlinear Anal. 6(2), 207–233 (1995)

    Article  MathSciNet  Google Scholar 

  25. Mazzeo, R., Vertman, B.: Elliptic theory of differential edge operators, II: boundary value problems. Indiana Univ. Math. J. 63(6), 1911–1955 (2014)

    Article  MathSciNet  Google Scholar 

  26. Robin Graham, C., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152(1), 89–118 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of the work was done when W. Ao was visiting the math department of Universidad Autónoma de Madrid in June 2018, she thanks the hospitality of the department. W. Ao was supported by NSFC (No. 11801421 and No. 11631011). M.d.M. González is supported by the Spanish Government Grants MTM2014-52402-C3-1-P and MTM2017-85757-P. Y. Sire would like to thank E. Delay and F. Pacard for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Sire.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, W., González, M.d.M. & Sire, Y. Boundary Connected Sum of Escobar Manifolds. J Geom Anal 30, 4092–4109 (2020). https://doi.org/10.1007/s12220-019-00231-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00231-1

Keywords

Mathematics Subject Classification

Navigation