Abstract
In this paper we study biconservative submanifolds in \(\mathbb {S}^n\times \mathbb {R}\) and \(\mathbb {H}^n\times \mathbb {R}\) with parallel mean curvature vector field and codimesion 2. We obtain some sufficient and necessary conditions for such submanifolds to be conservative. In particular, we obtain a complete classification of 3-dimensional biconservative submanifolds in \(\mathbb {S}^4\times \mathbb {R}\) and \(\mathbb {H}^4\times \mathbb {R}\) with nonzero parallel mean curvature vector field. We also get some results for biharmonic submanifolds in \(\mathbb {S}^n\times \mathbb {R}\) and \(\mathbb {H}^n\times \mathbb {R}\).
This is a preview of subscription content, access via your institution.
References
Baird, P., Eells, J.: A Conservation Law for Harmonic Maps. Lecture Notes in Math, vol. 894. Springer, Berlin (1981)
Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor. Ann. Mat. Pur. Appl. 193(2), 529–550 (2014)
Carter, S., West, A.: Partial tubes about immersed manifolds. Geom. Dedicata 54, 145–169 (1995)
Chen, B.Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17(2), 169–188 (1991)
Dillen, F., Fastenakels, J., Van der Veken, J.: Rotation hypersurfaces in \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R}\). Note Mat. 29, 41–54 (2008)
Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)
Fectu, D., Oniciuc, C., Pinheiro, A.L.: CMC biconservative surfaces in \(\mathbb{S}^n\times \mathbb{R} \) and \(\mathbb{H}^n\times \mathbb{R}\). J. Math. Anal. Appl. 425, 588–609 (2015)
Fu, Y.: On bi-conservative surfaces in Minkowski \(3\)-space. J. Geom. Phys. 66, 71–79 (2013)
Fu, Y.: Explicit classification of biconservative surfaces in Lorentz \(3\)-space forms. Ann. Mat. 194, 805–822 (2015)
Fu, Y., Turgay, N.C.: Complete classification of biconservative hypersurfaces with diagonalizable shape operator in the Minkowski \(4\)-space. Int. J. Math. 27(5), 17 (2016)
Hasanis, T., Vlachos, I.: Hypersurfaces in \(\mathbb{E}^4\) with harmonic mean curvature vector field. Math. Nachr. 172, 145–169 (1995)
Hilbert, D.: Die grundlagen der physik. Math. Ann. 92, 1–32 (1924)
Jiang, G.Y.: \(2\)-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7, 389–402 (1986)
Jiang, G.Y.: The conservation law for \(2\)-harmonic maps between Riemannian manifolds. Acta Math. Sin. 30, 220–225 (1987)
Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I. Interscience, New York (1963)
Lira, J.H., Tojeiro, R., Vitório, F.: A Bonnet theorem for isometric immersions into products of space forms. Arch. Math. 95, 469–479 (2010)
Manfio, F., Tojeiro, R.: Hypersurfaces with constant sectional curvature in \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R}\). Ill. J. Math. 55(1), 397–415 (2011)
Mendonça, B., Tojeiro, R.: Umbilical submanifolds of \(\mathbb{S}^n\times \mathbb{R}\). Can. J. Math. 66(2), 400–428 (2014)
Montaldo, S., Oniciuc, C., Ratto, A.: Biconservative surfaces. J. Geom. Anal. 26, 313–329 (2016)
Montaldo, S., Oniciuc, C., Ratto, A.: Proper biconservative immersions into the Euclidean space. Ann. Mat. Pura Appl. 195, 403–422 (2016)
Tojeiro, R.: On a class of hypersurfaces in \(\mathbb{S}^n\times \mathbb{R}\) and \(\mathbb{H}^n\times \mathbb{R}\). Bull. Braz. Math. Soc. (N. S.) 41(2), 199–209 (2010)
Turgay, N.C.: \(H\)-hypersurfaces with \(3\) distinct principal curvatures in the Euclidean spaces. Ann. Mat. Pura Appl. 194, 1795–1807 (2015)
Upadhyay, A., Turgay, N.C.: A classification of biconservative hypersurfaces in a pseudo-Euclidean space. J. Math. Anal. Appl. 444, 1703–1720 (2016)
Acknowledgements
The third author gratefully thanks for the support from the National Post-doctoral Fellowship of Science and Engineering Research Board (SERB), Government of India.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Manfio, F., Turgay, N.C. & Upadhyay, A. Biconservative Submanifolds in \(\mathbb {S}^n\times \mathbb {R}\) and \(\mathbb {H}^n\times \mathbb {R}\). J Geom Anal 29, 283–298 (2019). https://doi.org/10.1007/s12220-018-9990-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12220-018-9990-9
Keywords
- Biconservative submanifolds
- Biharmonic submanifolds
- Product spaces \(\mathbb {S}^n\times \mathbb {R}\) and \(\mathbb {H}^n\times \mathbb {R}\)
Mathematics Subject Classification
- Primary 53A10
- Secondary 53C40, 53C42