# N–S Systems via $$\mathcal {Q}$$–$$\mathcal {Q}^{-1}$$ Spaces

Article

## Abstract

Under $$(\alpha ,p,n-1)\in (-\infty ,1)\times (2,\infty )\times {\mathbb {N}}$$, this paper uses $$\mathcal {Q}_\alpha ({\mathbb {R}}^n)$$ and $$\mathcal {Q}^{-1}_{\alpha }(\mathbb R^n):=\hbox {div}\big (\mathcal {Q}_{\alpha }({\mathbb {R}}^{n})\big )^n$$ (covering $$\mathrm{BMO}({\mathbb {R}}^n)$$ and $$\mathrm{BMO}^{-1}({\mathbb {R}}^n)$$) where $$f\in \mathcal {Q}_\alpha ({\mathbb {R}}^{n}) \Leftrightarrow \int \nolimits _{\mathbb R^n}\frac{|f(x)|}{1+|x|^{n+1}}\,\mathrm{d}x<\infty \ \ \mathrm{and} \ \ \underset{\mathrm{coordinate}\, \mathrm{cubes}\, I}{\sup }\left( \iint \nolimits _{I\times (0,\ell (I))}|\nabla e^{t^2\Delta }f(x)|^2\right. \left. \frac{\omega _{\alpha }\left( \frac{t}{\ell (I)}\right) }{t^{n-1}}{\mathrm{d}x\mathrm{d}t}\right) ^\frac{1}{2}<\infty$$ with $$(0,1]\ni s\mapsto \omega _\alpha (s)={\left\{ \begin{array}{ll} s^n\quad &{}\hbox {as}\quad \alpha \in (-\infty ,0);\\ s^n\big (\ln \frac{e}{s}\Big )^2\quad &{}\hbox {as}\quad \alpha =0;\\ s^{n-2\alpha }\quad &{}\hbox {as}\quad \alpha \in (0,1), \end{array}\right. }$$ to demonstrate that the incompressible Navier–Stokes system $${\left\{ \begin{array}{ll} \Delta u-(u \cdot \nabla ) u+\nabla \mathrm{p}=\partial _t u\ \ \mathrm{and}\ \ \hbox {div}\,u=0 &{} \text {in } {\mathbb {R}}^{1+n}_+;\\ u(0,x)=a(x) &{} \text {as } x\in {\mathbb {R}}^{n} \end{array}\right. }$$ has a unique mild solution under $$\Vert a\Vert _{\big (\mathcal {Q}_\alpha ^{-1}({\mathbb {R}}^n)\big )^n}$$ being sufficiently small; however, its steady state$${\left\{ \begin{array}{ll} \Delta u-(u \cdot \nabla ) u+\nabla \mathrm{p}=0\ \ \mathrm{and}\ \ \hbox {div}\,u=0 &{} \text {in } {\mathbb {R}}^{n};\\ u(x)\rightarrow 0 &{} \text {as}\ \infty \leftarrow x\in {\mathbb {R}}^{n} \end{array}\right. }$$ has only zero solution under $$u\in \big (\mathrm{BMO}^{-1}(\mathbb R^n)\cap \mathscr {L}^{p,\frac{p(n-2)}{2}}({\mathbb {R}}^n)\big )^n$$.

## Keywords

N–S systems $$\mathcal {Q}$$$$\mathcal {Q}^{-1}$$ spaces Mild–null solutions

## Mathematics Subject Classification

30H25 35Q30 42B37 46E35

## References

1. 1.
Bao, G., Wulan, H.: $$Q_{K}$$ spaces of several real variables. Abstr. Appl. Anal. 2014.
2. 2.
Bourgain, J., Pavlović, N.: Ill-posedness of the Navier-Stokes equations in a critical space in 3D. J. Funct. Anal. 255, 2233–2247 (2008)
3. 3.
Cannone, M., Meyer, Y., Planchon, F.: Solutions auto-similaires des équations de Navier-Stokes in $${\mathbb{R}}^3$$, Exposé n. VIII, Séminaire X-EDP. Ecole Polytechnique, Palaiseau (1963)Google Scholar
4. 4.
Chae, D., Wolf, J.: On Liouville type theorems for steady Navier-Stokes equations in $${\mathbb{R}}^3$$. J. Differ. Equ. 261, 5541–5560 (2016)
5. 5.
Dafni, G., Xiao, J.: Some new tent spaces and duality theorems for fractional Carleson measures and $$\cal{Q}_\alpha ({\mathbb{R}}^n)$$. J. Funct. Anal. 208, 377–422 (2004)
6. 6.
Dafni, G., Xiao, J.: The dyadic structure and atomic decomposition of $$Q$$ spaces in several variables. Tohoku Math. J. 57, 119–145 (2005)
7. 7.
Escauriaza, L., Seregin, G., Shverak, V.: $$L_{3,\infty }$$-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk. 58, 3 (2003)
8. 8.
Essén, M., Janson, S., Peng, L., Xiao, J.: $$Q$$ spaces of several real variables. Indiana Univ. Math. J. 49, 575–615 (2000)
9. 9.
Farhat, A., Grujić, Z., Leitmeyer, K.: The space $$B^{-1}_{\infty ,\infty }$$, volumetric sparseness, and 3D NSE. arXiv:1603.08763v5 [math.AP] 16 Nov 2016
10. 10.
Fefferman, C., Stein, E.M.: $$H^p$$ spaces of several variables. Acta Math. 129, 137–193 (1972)
11. 11.
Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems. Springer Tracts in Natural Philosophy 39, vol. 2. Springer, New York (1994)Google Scholar
12. 12.
Giaquinta, M.: Multiple Inegrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematical Studies. Princeton University Press, Princeton (1983)Google Scholar
13. 13.
Gogatishvili, A., Mustafayev, RCh.: A note on boundedness of the Hardy-Littlewood maximal operator on Morrey spaces. Mediterr. J. Math. 13, 1885–1891 (2016)
14. 14.
Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, Inc., London (2004)
15. 15.
Hmidi, T., Li, D.: Small $$\dot{B}^{-1}_{\infty,\infty }$$ implies regularity. Dyn. Partial Differ. Equ. 14, 1–4 (2017)
16. 16.
Jiang, R., Xiao, J., Yang, D.: Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants. Anal. Appl. 14, 679–703 (2016)
17. 17.
John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)
18. 18.
Kato, T.: Strong solutions of the Navier-Stokes equations in Morrey spaces. Bol. Soc. Brasil. Math. 22, 127–155 (1992)
19. 19.
Koch, H., Tataru, D.: Well-posedness for the Navier-Stokes equations. Adv. Math. 157, 22–35 (2001)
20. 20.
Koskela, P., Xiao, J., Zhang, Y., Zhou, Y.: A quasiconformal composition problem for the $$Q$$-spaces. J. Eur. Math. Soc. 19, 1159–1187 (2017)
21. 21.
Kufner, A., Persson, I.-E.: Weighted Inequalities of Hardy Type. World Scientific Publishing, River Edge (2003)
22. 22.
Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Problem. Chapman and Hall/CRC, Boca Raton (2002)
23. 23.
Lemarié-Rieusset, P.G.: The Navier-Stokes equations in the critical Morrey-Campanato space. Rev. Mat. Iberoam 23, 897–930 (2007)
24. 24.
Lemarié-Rieusset, P.G.: The Navier-Stokes Problem in the 21st Century. CRC Press, Boca Raton (2016)
25. 25.
Mazýa, V.G., Verbitsky, I.E.: Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator. Invent. Math. 162, 81–136 (2005)
26. 26.
Seregin, G.: Liouville type theorem for stationary Navier-Stokes equations. Nonlinearity 29, 2191–2195 (2016)
27. 27.
Seregin, G.: A Liouville type theorem for steady-state Navier-Stokes equations. arXiv:1611.0156v1 [math.AP] 4 Nov 2016
28. 28.
Strichartz, R.S.: Bounded mean oscillation and Sobolev spaces. Indiana Univ. Math. J. 29, 539–558 (1980)
29. 29.
Wang, Y., Xiao, J.: Homogeneous Campanato-Sobolev classes. Appl. Comput. Harmon. Anal. 39, 214–247 (2015)
30. 30.
Wang, Z., Xiao, J., Zhou, Y.: The $${\cal{Q}}_{\alpha }$$-restriction problem (2016) (preprint)Google Scholar
31. 31.
Xiao, J.: Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn. Partial Differ. Equ. 4, 227–245 (2007)
32. 32.
Xiao, J.: Homothetic variant of fractional Sobolev space with application to Navier-Stokes system revisited. Dyn. Partial Differ. Equ. 11, 167–181 (2014)
33. 33.
Xiao, J.: A sharp Sobolev trace inequality for the fractional-order derivatives. Bull. Sci. Math. 130, 87–96 (2006)
34. 34.
Yang, Q., Qian, T., Li, P.: Fefferman-Stein decomposition for $$Q$$-spaces and micro-local quantities. Nonlinear Anal. 145, 24–48 (2016)
35. 35.
Yue, H., Dafni, G.: A John-Nirenberg type inequality for $$\cal{Q}_\alpha ({\mathbb{R}}^n)$$. J. Math. Anal. Appl. 351, 428–439 (2009)