Local Approximation of Arbitrary Functions by Solutions of Nonlocal Equations



We show that any function can be locally approximated by solutions of prescribed linear equations of nonlocal type. In particular, we show that every function is locally s-caloric, up to a small error. The case of non-elliptic and non-parabolic operators is taken into account as well.


Density properties Approximation s-caloric functions 

Mathematics Subject Classification

35R11 60G22 35A35 34A08 


  1. 1.
    Bucur, C.: Some observations on the Green function for the ball in the fractional Laplace framework. Commun. Pure Appl. Anal. 15(2), 657–699 (2016).  https://doi.org/10.3934/cpaa.2016.15.657 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bucur, C.: Local density of Caputo-stationary functions in the space of smooth functions. ESAIM Control Optim. Calc. Var. 23(4), 1361–1380 (2017).  https://doi.org/10.1051/cocv/2016056 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Caffarelli, L., Dipierro, S., Valdinoci, E.: A logistic equation with nonlocal interactions. Kinet. Relat. Models 10(1), 141–170 (2017).  https://doi.org/10.3934/krm.2017006 MathSciNetMATHGoogle Scholar
  4. 4.
    Dipierro, S., Savin, O., Valdinoci, E.: All functions are locally \(s\)-harmonic up to a small error. J. Eur. Math. Soc. (JEMS) 19(4), 957–966 (2017).  https://doi.org/10.4171/JEMS/684 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Massaccesi, A., Valdinoci, E.: Is a nonlocal diffusion strategy convenient for biological populations in competition? J. Math. Biol. 74(1–2), 113–147 (2017).  https://doi.org/10.1007/s00285-016-1019-z MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101(3), 275–302 (2014).  https://doi.org/10.1016/j.matpur.2013.06.003 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33(5), 2105–2137 (2013).  https://doi.org/10.3934/dcds.2013.33.2105 MathSciNetMATHGoogle Scholar
  8. 8.
    Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133–154 (2014).  https://doi.org/10.5565/PUBLMAT_58114_06 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  • Serena Dipierro
    • 1
    • 2
  • Ovidiu Savin
    • 3
  • Enrico Valdinoci
    • 1
    • 2
    • 4
    • 5
  1. 1.Dipartimento di MatematicaUniversità degli studi di MilanoMilanItaly
  2. 2.Department of Mathematics and StatisticsUniversity of Western AustraliaCrawleyAustralia
  3. 3.Department of MathematicsColumbia UniversityNew YorkUSA
  4. 4.School of Mathematics and StatisticsUniversity of MelbourneParkvilleAustralia
  5. 5.Istituto di Matematica Applicata e Tecnologie InformaticheConsiglio Nazionale delle RicerchePaviaItaly

Personalised recommendations