Abstract
In this paper we introduce the notion of tangent space \({\mathcal {T}}_{o} {\mathcal {G}}\) of a (not necessary smooth) subgroup \({\mathcal {G}}\) of the diffeomorphism group \({\mathcal {D}}i\!f\!f^{\infty }(M)\) of a compact manifold M. We prove that \({\mathcal {T}}_{o} {\mathcal {G}}\) is a Lie subalgebra of the Lie algebra of smooth vector fields on M. The construction can be generalized to subgroups of any (finite- or infinite-dimensional) Lie groups. The tangent Lie algebra \({\mathcal {T}}_{o} {\mathcal {G}}\) introduced this way is a generalization of the classical Lie algebra in the smooth cases. As a working example we discuss in detail the tangent structure of the holonomy group and fibered holonomy group of Finsler manifolds.
This is a preview of subscription content, access via your institution.
References
Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)
Borel, A., Lichnerowicz, A.: Groupes d’holonomie des variétés riemanniennes. C. R. Acad. Sci. Paris 234, 1835–1837 (1952)
Bryant, R.: Recent advances in the theory of holonomy. Astérisque, 266:Exp. No. 861, 5, 351–374 (2000). Séminaire Bourbaki, vol. 1998/99
Grifone, J.: Structure presque-tangente et connexions. Inst. Ann. Inst. Fourier (Grenoble) 22(1), 287–334 (1972)
Hubicska, B., Muzsnay, Z.: The holonomy groups of projectively flat Randers two-manifolds of constant curvature (preprint) (2017)
Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)
Kozma, L.: On holonomy groups of Landsberg manifolds. Tensor (N.S.) 62(1), 87–90 (2000)
Mauhart, M., Michor, P.W.: Commutators of flows and fields. Arch. Math. (Brno) 28(3–4), 229–236 (1992)
Michor, P.W.: Gauge Theory for Fiber Bundles. Monographs and Textbooks in Physical Science, vol. 19. Lecture Notes. Bibliopolis, Naples (1991)
Muzsnay, Z., Nagy, P.T.: Tangent Lie algebras to the holonomy group of a Finsler manifold. Commun. Math. 19(2), 137–147 (2011)
Muzsnay, Z., Nagy, P.T.: Finsler manifolds with non-Riemannian holonomy. Houst. J. Math. 38(1), 77–92 (2012)
Muzsnay, Z., Nagy, P.T.: Witt algebra and the curvature of the Heisenberg group. Commun. Math. 20(1), 33–40 (2012)
Muzsnay, Z., Nagy, P.T.: Characterization of projective finsler manifolds of constant curvature having infinite dimensional holonomy group. Publ. Math. Debrecen 84(1–2), 17–28 (2014)
Muzsnay, Z., Nagy, P.T.: Finsler 2-manifolds with maximal holonomy group of infinite dimension. Differ. Geom. Appl. 39, 1–9 (2015)
Omori, H.: Infinite-Dimensional Lie Groups. Translations of Mathematical Monographs, vol. 158. American Mathematical Society, Providence, RI (1997). Translated from the 1979 Japanese original and revised by the author
Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. I, 2nd edn. Publish or Perish, Inc., Wilmington, Del. (1979)
Szabó, Z.I.: Positive definite Berwald spaces. Structure theorems on Berwald spaces. Tensor (N.S.) 35(1), 25–39 (1981)
Szilasi, J., Lovas, R.L., Kertész, D.C.: Connections, Sprays and Finsler Structures. World Scientific, Hackensack, NJ (2014)
Wojtyński, W.: Groups of strings. J. Lie Theory 13(2), 359–382 (2003)
Acknowledgements
The authors would like to thank the referee for the constructive comments and recommendations which contributed to improving the paper. The research of Z. Muzsnay was supported in part by the projects EFOP-3.6.1-16-2016-00022 and EFOP-3.6.2-16-2017-00015, co-financed by the European Union and the European Social Fund.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hubicska, B., Muzsnay, Z. Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory. J Geom Anal 30, 107–123 (2020). https://doi.org/10.1007/s12220-018-00138-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12220-018-00138-3