Skip to main content
Log in

Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexander, R., Alexander, S.: Geodesics in Riemannian manifolds-with-boundary. Indiana Univ. Math. J. 30(4), 481–488 (1981)

    Article  MathSciNet  Google Scholar 

  2. Anikonov, Y.E.: Some methods of investigating multidimensional inverse problems for differential equations (1978)

  3. de Hoop, M.V., Holman, S.F., Iversen, E., Lassas, M., Ursin, B.: Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times. J. Math. Pures Appl. 103(3), 830–848 (2015)

    Article  MathSciNet  Google Scholar 

  4. Duistermaat, J.J., Hörmander, L.: Fourier integral operators II. Acta Math. 128(1), 183–269 (1972)

    Article  MathSciNet  Google Scholar 

  5. Grechka, V., De La Pena, A., Schisselé-Rebel, E., Auger, E., Roux, P.-F.: Relative location of microseismicity. Geophysics 80(6), WC1–WC9 (2015)

    Article  Google Scholar 

  6. Greenleaf, A., Uhlmann, G.: Recovering singularities of a potential from singularities of scattering data. Commun. Math. Phys. 157(3), 549–572 (1993)

    Article  MathSciNet  Google Scholar 

  7. Hörmander, L.: The analysis of linear partial differential operators. IV. Classics in Mathematics. Springer, Berlin. Fourier integral operators, Reprint of the 1994 edition (2009)

  8. Ivanov, S.: Distance difference representations of Riemannian manifolds (2018). arXiv preprint arXiv:1806.05257

  9. Katchalov, A., Kurylev, Y., Lassas, M.: Inverse Boundary Spectral Problems, Monographs and Surveys in Pure and Applied Mathematics, vol. 123. Chapman & Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  10. Kupka, I., Peixoto, M., Pugh, C.: Focal stability of Riemann metrics. Journal fur die reine und angewandte Mathematik (Crelles Journal) 2006(593), 31–72 (2006)

    Article  MathSciNet  Google Scholar 

  11. Kurylev, Y.: Multidimensional Gelfand inverse problem and boundary distance map. In: Soga, H. (ed.) Inverse Problems Related with Geometry, pp. 1–15. Ibaraki University, Ibaraki (1997)

    Google Scholar 

  12. Lassas, M., Saksala, T.: Determination of a Riemannian manifold from the distance difference functions. Asian J. Math. (2015). arXiv preprint arXiv:1510.06157

  13. Lassas, M., Saksala, T., Zhou, H.: Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Probl. Imaging 12(4), 993–1031 (2018)

    Article  MathSciNet  Google Scholar 

  14. Matveev, V.S.: Geodesically equivalent metrics in general relativity. J. Geom. Phys. 62(3), 675–691 (2012)

    Article  MathSciNet  Google Scholar 

  15. Poupinet, G., Ellsworth, W., Frechet, J.: Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras Fault, California. J. Geophys. Res. 89(B7), 5719–5731 (1984)

    Article  Google Scholar 

  16. Sakai, T.: Riemannian Geometry, vol. 149. American Mathematical Society, Providence (1996)

    Book  Google Scholar 

  17. Sharafutdinov, V.A.: Integral Geometry of Tensor Fields, vol. 1. Walter de Gruyter, Berlin (2012)

    Google Scholar 

  18. Stefanov, P., Uhlmann, G.: Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom. 82(2), 383–409 (2009)

    Article  MathSciNet  Google Scholar 

  19. Topalov, P., Matveev, V.S.: Geodesic equivalence via integrability. Geom. Dedicata 96(1), 91–115 (2003)

    Article  MathSciNet  Google Scholar 

  20. Waldhauser, F., Ellsworth, W.L.: A double-difference earthquake location algorithm: method and application to the northern Hayward Fault, California. Bull. Seismol. Soc. Am. 90(6), 1353–1368 (2000)

    Article  Google Scholar 

  21. Zhang, H., Thurber, C.H.: Double-difference tomography: the method and its application to the Hayward Fault, California. Bull. Seismol. Soc. Am. 93(5), 1875–1889 (2003)

    Article  Google Scholar 

  22. Zhang, H., Thurber, C.: Development and applications of double-difference seismic tomography. Pure A. Geophys. 163(2), 373–403 (2006)

    Article  Google Scholar 

  23. Zhou, X.: Recovery of the \(C^{\infty }\) jet from the boundary distance function. Geom. Dedicata 160(1), 229–241 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Lassas and S. Ivanov for their invaluable comments. MVdH was partially supported by the Simons Foundation under the MATH \(+\) X program, the National Science Foundation under grant DMS-1559587, and by members of the Geo-Mathematical Imaging Group at Rice University. TS was supported by the Simons Foundation under the MATH \(+\) X program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teemu Saksala.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Hoop, M.V., Saksala, T. Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary. J Geom Anal 29, 3308–3327 (2019). https://doi.org/10.1007/s12220-018-00111-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-00111-0

Keywords

Mathematics Subject Classification

Navigation