Skip to main content

On Symmetric CR Geometries of Hypersurface Type

Abstract

We study non-degenerate CR geometries of hypersurface type that are symmetric in the sense that, at each point, there is a CR transformation reversing the CR distribution at that point. We show that such geometries are either flat or homogeneous. We show that non-flat non-degenerate symmetric CR geometries of hypersurface type are covered by CR geometries with a compatible pseudo-Riemannian metric preserved by all symmetries. We construct examples of simply connected flat non-degenerate symmetric CR geometries of hypersurface type that do not carry a pseudo-Riemannian metric compatible with the symmetries.

This is a preview of subscription content, access via your institution.

References

  1. Altomani, A., Medori, C., Nacinovich, M.: On homogeneous and symmetric CR manifolds. Boll. Unione Mat. Ital. 3(2), 221–265 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Čap, A., Slovák, J.: Parabolic Geometries: Background and general theory. American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  3. Chern, S.S., Moser, J.K.: Real hypersurfaces in complex manifolds. Acta Math. 133, 219–271 (1974). Erratum Acta Math. 150 no. 3–4 (1983) 297

    MathSciNet  Article  Google Scholar 

  4. Gregorovič, J.: General construction of symmetric parabolic structures. Differ. Geom. Appl. 30(5), 450–476 (2012)

    MathSciNet  Article  Google Scholar 

  5. Gregorovič, J., Zalabová, L.: Symmetric parabolic contact geometries and symmetric spaces. Transform. Groups 18(3), 711–737 (2013)

    MathSciNet  Article  Google Scholar 

  6. Gregorovič, J., Zalabová, L.: Notes on symmetric conformal geometries. Arch. Math. TOMUS 51(5), 287–296 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Gregorovič, J., Zalabová, L.: On automorphisms with natural tangent action on homogeneous parabolic geometries. J. Lie Theor. 25, 677–715 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Gregorovič, J., Zalabová, L.: Geometric properties of homogeneous parabolic geometries with generalized symmetries. Diff. Geom. Appl. 49, 388–422 (2016)

    MathSciNet  Article  Google Scholar 

  9. Gregorovič, J., Zalabová, L.: Local generalized symmetries and locally symmetric parabolic geometries. SIGMA 13, 032–33 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Kaup, W., Zaitsev, D.: On symmetric Cauchy–Riemann manifolds. Adv. Math. 149(2), 145–181 (2000)

    MathSciNet  Article  Google Scholar 

  11. Kruglikov, B., The, D.: The gap phenomenon in parabolic geometries. J. Reine Angew. Math. 723, 153–215 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Loos, O.: Spiegelungsräume und homogene symmetrische Räume. Math. Zeitschr. 99, 141–170 (1967)

    Article  Google Scholar 

  13. Onishchik, A.: On compact Lie groups transitive on certain manifolds. Sov. Math. Dokl. 1, 12881291 (1961)

    MathSciNet  Google Scholar 

  14. Tanaka, N.: On the pseudo-conformal geometry of hypersurfaces of the space of complex variables. J. Math. Soc. Jpn. 14, 397–429 (1962)

    MathSciNet  Article  Google Scholar 

  15. Zalabová, L.: A non-homogeneous, symmetric contact projective structure. Cent. Eur. J. Math. 12(6), 879–886 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Gregorovič.

Additional information

First author supported by the project P29468 of the Austrian Science Fund (FWF). Second author supported by the Grant 17-01171S of the Czech Science Foundation (GAČR)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gregorovič, J., Zalabová, L. On Symmetric CR Geometries of Hypersurface Type. J Geom Anal 29, 3135–3159 (2019). https://doi.org/10.1007/s12220-018-00110-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-00110-1

Keywords

  • CR geometry
  • Homogeneous manifold
  • Webster metric

Mathematics Subject Classification

  • 32V05
  • 32V30
  • 53C30