Skip to main content

On Non-positive Curvature Properties of the Hilbert Metric

Abstract

In this paper, we consider different types of non-positive curvature properties of the Hilbert metric of a convex domain in \({\mathbb {R}^n}\). First, we survey the relationships among the concepts and prove that in the case of Hilbert metric some of them are equivalent. Furthermore, we show some condition which implies the rigidity feature: if the Hilbert metric is Berwald, i.e., its Finslerian Chern connection reduces to a linear one, then the domain is an ellipsoid and the metric is Riemannian.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bačák, M., Hua, B., Jost, J., Kell, M., Schikorra, A.: A notion of nonpositive curvature for general metric spaces. Differ. Geom. Appl. 38, 22–32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, D., Chern, S.S., Shen, Z.: Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics. Springer, New York (2000)

    Book  Google Scholar 

  3. Busemann, H.: The Geometry of Geodesics. Academic Press, New York (1955)

    MATH  Google Scholar 

  4. Gu, S.: On the equivalence of Alexandrov curvature and Busemann curvature. Turk. J. Math. 41(1), 211–215 (2017)

    Article  MathSciNet  Google Scholar 

  5. Guo, R.: Characterizations of hyperbolic geometry among Hilbert geometries: a survey. Handbook of Hilbert Geometry, pp. 147–158. IRMA Lect. Math. Theor. Phys., 22, Eur. Math. Soc., Zürich (2014)

  6. Jost, J.: Nonpositivity Curvature: Geometric and Analytic Aspects. Lecture in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1997)

  7. Kelly, P., Straus, E.: Curvature in Hilbert geometries. Pac. J. Math. 8, 119–125 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kristály, A., Kozma, L.: Metric characterization of Berwald spaces of non-positive flag curvature. J. Geom. Phys. 56(8), 1257–1270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Okada, T.: On models of projectively flat Finsler spaces of constant negative curvature. Tensor (N.S.) 40(2), 117–124 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Papadopoulos, A.: Metric Spaces, Convexity and Non-positive Curvature, 2nd edn. IRMA Lectures in Mathematics and Theoretical Physics, 6. European Mathematical Society (EMS), Zürich (2014)

  11. Troyanov, M.: Funk and Hilbert geometries from the Finslerian viewpoint, Handbook of Hilbert geometry, pp. 69 -110. IRMA Lect. Math. Theor. Phys., 22. Eur. Math. Soc., Zürich (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kozma.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alabdulsada, L.M., Kozma, L. On Non-positive Curvature Properties of the Hilbert Metric. J Geom Anal 29, 569–576 (2019). https://doi.org/10.1007/s12220-018-0011-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0011-9

Keywords

Mathematics Subject Classification