Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. Part I. Lett. Math. Phys. 1, 521–530 (1977)
Article
Google Scholar
Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization, Part II. Ann. Phys. 111, 61–110 (1978)
Article
Google Scholar
Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization, Part III. Ann. Phys. 111, 111–151 (1978)
Article
Google Scholar
Berezin, F.A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38, 1116–1175 (1974)
MathSciNet
Google Scholar
Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin (2004) (corrected reprint of the 1992 original)
Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and \(gl(n)\), \(n\rightarrow \infty \) limits. Commun. Math. Phys. 165, 281–296 (1994)
Article
Google Scholar
Boutet de Monvel, L., Guillemin, V.: The Spectral Theory of Toeplitz Operators. Annals of Mathematics Studies, vol. 99. Princeton University Press, Princeton (1981)
Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds. I. J. Geom. Phys. 7(1), 45–62 (1990)
MathSciNet
Article
Google Scholar
Charles, L.: Quantization of compact symplectic manifolds. J. Geom. Anal. 26(4), 2664–2710 (2016)
MathSciNet
Article
Google Scholar
Dai, X., Liu, K., Ma, X.: On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72, 1–41 (2006)
MathSciNet
Article
Google Scholar
Fedosov, B.V.: Deformation Quantization and Index Theory. Mathematical Topics, vol. 9. Akademie Verlag, Berlin (1996)
Guillemin, V., Uribe, A.: The Laplace operator on the \(n\)-th tensor power of a line bundle: eigenvalues which are bounded uniformly in \(n\). Asymptot. Anal. 1, 105–113 (1988)
Article
Google Scholar
Hsiao, C.-Y., Marinescu, G.: Berezin–Toeplitz quantization for lower energy forms. Commun. Partial Differ. Equ. 42, 895–942 (2017)
MathSciNet
Article
Google Scholar
Ioos, L.: On the composition of Berezin–Toeplitz operators on symplectic manifolds. Math. Z. (to appear). arXiv:1703.05688
Kordyukov, Y.A.: On asymptotic expansions of generalized Bergman kernels on symplectic manifolds. arXiv:1703.04107
Kostant, B.: Quantization and unitary representations. I. Prequantization. Lectures in Modern Analysis and Applications, III. Lecture Notes in Mathematics, vol. 170, pp. 87–208. Springer, Berlin (1970)
Google Scholar
Lu, W., Ma, X., Marinescu, G.: Donaldson’s \(Q\)-operators for symplectic manifolds. Sci. China Math. 60, 1047–1056 (2017)
MathSciNet
Article
Google Scholar
Ma, X.: Geometric quantization on Kähler and symplectic manifolds. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 785–810. Hindustan Book Agency, New Delhi (2010)
Ma, X., Marinescu, G.: The Spin\(^{c}\) Dirac operator on high tensor powers of a line bundle. Math. Z. 240(3), 651–664 (2002)
MathSciNet
Article
Google Scholar
Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol. 254. Birkhäuser, Boston (2007)
Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217(4), 1756–1815 (2008)
MathSciNet
Article
Google Scholar
Ma, X., Marinescu, G.: Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18, 565–611 (2008)
MathSciNet
Article
Google Scholar
Ma, X., Marinescu, G.: Berezin–Toeplitz quantization and its kernel expansion. Trav. Math. 19, 125–166 (2011)
MathSciNet
MATH
Google Scholar
Ma, X., Marinescu, G.: Berezin–Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1–58 (2012)
MathSciNet
MATH
Google Scholar
Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by Berezin–Toeplitz quantization. In: Conférence Moshé Flato 1999, vol. II (Dijon). Mathematical Physics Studies, vol. 22, pp. 289–306. Kluwer, Dordrecht (2000)
Chapter
Google Scholar
Schlichenmaier, M.: Berezin–Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys., Art. ID 927280 (2010)
Souriau, J.-M.: Structure des systèmes dynamiques, Maîtrises de mathématiques. Dunod, Paris (1970)
Xu, H.: An explicit formula for the Berezin star product. Lett. Math. Phys. 101(3), 239–264 (2012)
MathSciNet
Article
Google Scholar