Skip to main content

Berezin–Toeplitz Quantization for Eigenstates of the Bochner Laplacian on Symplectic Manifolds


We study the Berezin–Toeplitz quantization using as quantum space the space of eigenstates of the renormalized Bochner Laplacian corresponding to eigenvalues localized near the origin on a symplectic manifold. We show that this quantization has the correct semiclassical behavior and construct the corresponding star-product.

This is a preview of subscription content, access via your institution.


  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. Part I. Lett. Math. Phys. 1, 521–530 (1977)

    Article  Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization, Part II. Ann. Phys. 111, 61–110 (1978)

    Article  Google Scholar 

  3. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization, Part III. Ann. Phys. 111, 111–151 (1978)

    Article  Google Scholar 

  4. Berezin, F.A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38, 1116–1175 (1974)

    MathSciNet  Google Scholar 

  5. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin (2004) (corrected reprint of the 1992 original)

  6. Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and \(gl(n)\), \(n\rightarrow \infty \) limits. Commun. Math. Phys. 165, 281–296 (1994)

    Article  Google Scholar 

  7. Boutet de Monvel, L., Guillemin, V.: The Spectral Theory of Toeplitz Operators. Annals of Mathematics Studies, vol. 99. Princeton University Press, Princeton (1981)

  8. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds. I. J. Geom. Phys. 7(1), 45–62 (1990)

    MathSciNet  Article  Google Scholar 

  9. Charles, L.: Quantization of compact symplectic manifolds. J. Geom. Anal. 26(4), 2664–2710 (2016)

    MathSciNet  Article  Google Scholar 

  10. Dai, X., Liu, K., Ma, X.: On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72, 1–41 (2006)

    MathSciNet  Article  Google Scholar 

  11. Fedosov, B.V.: Deformation Quantization and Index Theory. Mathematical Topics, vol. 9. Akademie Verlag, Berlin (1996)

  12. Guillemin, V., Uribe, A.: The Laplace operator on the \(n\)-th tensor power of a line bundle: eigenvalues which are bounded uniformly in \(n\). Asymptot. Anal. 1, 105–113 (1988)

    Article  Google Scholar 

  13. Hsiao, C.-Y., Marinescu, G.: Berezin–Toeplitz quantization for lower energy forms. Commun. Partial Differ. Equ. 42, 895–942 (2017)

    MathSciNet  Article  Google Scholar 

  14. Ioos, L.: On the composition of Berezin–Toeplitz operators on symplectic manifolds. Math. Z. (to appear). arXiv:1703.05688

  15. Kordyukov, Y.A.: On asymptotic expansions of generalized Bergman kernels on symplectic manifolds. arXiv:1703.04107

  16. Kostant, B.: Quantization and unitary representations. I. Prequantization. Lectures in Modern Analysis and Applications, III. Lecture Notes in Mathematics, vol. 170, pp. 87–208. Springer, Berlin (1970)

    Google Scholar 

  17. Lu, W., Ma, X., Marinescu, G.: Donaldson’s \(Q\)-operators for symplectic manifolds. Sci. China Math. 60, 1047–1056 (2017)

    MathSciNet  Article  Google Scholar 

  18. Ma, X.: Geometric quantization on Kähler and symplectic manifolds. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 785–810. Hindustan Book Agency, New Delhi (2010)

  19. Ma, X., Marinescu, G.: The Spin\(^{c}\) Dirac operator on high tensor powers of a line bundle. Math. Z. 240(3), 651–664 (2002)

    MathSciNet  Article  Google Scholar 

  20. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol. 254. Birkhäuser, Boston (2007)

  21. Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217(4), 1756–1815 (2008)

    MathSciNet  Article  Google Scholar 

  22. Ma, X., Marinescu, G.: Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18, 565–611 (2008)

    MathSciNet  Article  Google Scholar 

  23. Ma, X., Marinescu, G.: Berezin–Toeplitz quantization and its kernel expansion. Trav. Math. 19, 125–166 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Ma, X., Marinescu, G.: Berezin–Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1–58 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by Berezin–Toeplitz quantization. In: Conférence Moshé Flato 1999, vol. II (Dijon). Mathematical Physics Studies, vol. 22, pp. 289–306. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  26. Schlichenmaier, M.: Berezin–Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys., Art. ID 927280 (2010)

  27. Souriau, J.-M.: Structure des systèmes dynamiques, Maîtrises de mathématiques. Dunod, Paris (1970)

  28. Xu, H.: An explicit formula for the Berezin star product. Lett. Math. Phys. 101(3), 239–264 (2012)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiaonan Ma.

Additional information

To Gennadi Henkin, in memoriam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Louis Ioos was supported by grants from Région Ile-de-France. Wen Lu was partially supported by the National Natural Science Foundation of China (Grant No. 11401232). Xiaonan Ma was partially supported by NNSFC 11528103, ANR-14-CE25-0012-01, and funded through the Institutional Strategy of the University of Cologne within the German Excellence Initiative. George Marinescu was partially supported by DFG-funded project SFB TRR 191.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ioos, L., Lu, W., Ma, X. et al. Berezin–Toeplitz Quantization for Eigenstates of the Bochner Laplacian on Symplectic Manifolds. J Geom Anal 30, 2615–2646 (2020).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Toeplitz operator
  • Berezin-Toeplitz quantization
  • Generalized Bergman kernel
  • Bochner Laplacian

Mathematics Subject Classification

  • 53D50
  • 81S10
  • 47B35
  • 58J20