Skip to main content
Log in

Hardy Spaces Associated with Monge–Ampère Equation

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The main concern of this paper is to study the boundedness of singular integrals related to the Monge–Ampère equation established by Caffarelli and Gutiérrez. They obtained the \(L^2\) boundedness. Since then the \(L^p, 1<p<\infty \), weak (1,1) and the boundedness for these operators on atomic Hardy space were obtained by several authors. It was well known that the geometric conditions on measures play a crucial role in the theory of the Hardy space. In this paper, we establish the Hardy space \(H^p_{\mathcal F}\) via the Littlewood–Paley theory with the Monge–Ampère measure satisfying the doubling property together with the noncollapsing condition, and show the \(H^p_{\mathcal F}\) boundedness of Monge–Ampère singular integrals. The approach is based on the \(L^2\) theory and the main tool is the discrete Calderón reproducing formula associated with the doubling property only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Assumption (1.2) was not explicitly stated in [18], but it follows from [18, (2.4)] and [18, p. 3094, line 6] that

    $$\begin{aligned} \mu (S(x,r))\approx \mu (B_d(x,r))\approx \mu (B_\rho (x, r))\approx r. \end{aligned}$$

    At the end of the proof of [18, Theorem 1.6], it requires \(\mu (S)\approx 2^{-k}\), where \(S=S(x, C2^{-k})\). Moreover, Theorems 5.1, 5.2, 6.2, 6.4, and 8.1 in [18] hold under the Assumption (1.2).

References

  1. Aimar, H., Forzani, L., Toledano, R.: Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge–Ampère equation. J. Fourier Anal. Appl. 4, 377–381 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L.A., Gutiérrez, C.E.: Real analysis related to the Monge–Ampère equation. Trans. Am. Math. Soc. 348, 1075–1092 (1996)

    Article  MATH  Google Scholar 

  3. Caffarelli, L.A., Gutiérrez, C.E.: Singular integrals related to the Monge–Ampère equation. In: D’Atellis, C.A., Fernandez-Berdaguer, E.M. (eds.) Wavelet Theory and Harmonic Analysis in Applied Sciences (Buenos Aires, 1995), pp. 3–13. Birkhäuser, Boston (1997)

    Google Scholar 

  4. Christ, M.: A \(Tb\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60(61), 601–628 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Math. Springer, Berlin/New York (1971)

    Book  MATH  Google Scholar 

  6. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. David, G., Journé, J.-L., Semmes, S.: Calderón–Zygmund operators, para-accretive functions and interpolation. Rev. Mat. Iberoam. 1, 1–56 (1985)

    Article  MATH  Google Scholar 

  8. Deng, D., Han, Y.: Harmonic Analysis on Spaces of Homogeneous Type (with a Preface by Yves Meyer). Lecture Notes in Math. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  9. Ding, Y., Lin, C.-C.: Hardy spaces associated to the sections. Tôhoku Math. J. 57, 147–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Han, Y., Lee, M.-Y., Lin, C.-C.: Boundedness of Monge–Ampère singular integral operators on Besov spaces (2017). arXiv:1709.03278

  12. Han, Y., Müller, D., Yang, D.: Littlewood–Paley–Stein characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Caratheodory spaces. Abstr. Appl. Anal. (2008). https://doi.org/10.1155/2008/893409

  14. Han, Y., Sawyer, E.T.: Littlewood–Paley theory on spaces of homogeneous type and the classical function spaces. Mem. Am. Math. Soc. 110, 530 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Incognito, A.: Weak-type \((1,1)\) inequality for the Monge–Ampère SIO’s. J. Fourier Anal. Appl. 7, 41–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367, 121–189 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, M.-Y.: The boundedness of Monge–Ampère singular integral operators. J. Fourier Anal. Appl. 18, 211–222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, C.-C.: Boundedness of Monge–Ampère singular integral operators acting on Hardy spaces and their duals. Trans. Am. Math. Soc. 368, 3075–3104 (2016)

    Article  MATH  Google Scholar 

  19. Macías, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagel, A., Stein, E.M.: On the product theory of singular integrals. Rev. Mat. Iberoam. 20, 531–561 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sawyer, E., Wheeden, R.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114, 813–874 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Ming-Yi Lee and Chin-Cheng Lin are supported by the Ministry of Science and Technology, R.O.C. under Grant Nos. #MOST 106-2115-M-008-003-MY2 and #MOST 106-2115-M-008-004-MY3, respectively, as well as supported by the National Center for Theoretical Sciences of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yi Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Lee, MY. & Lin, CC. Hardy Spaces Associated with Monge–Ampère Equation. J Geom Anal 28, 3312–3347 (2018). https://doi.org/10.1007/s12220-017-9961-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9961-6

Keywords

Mathematics Subject Classification

Navigation