Abstract
We give abstract versions of the large deviation theorem for the distribution of zeros of polynomials and apply them to the characteristic polynomials of Hermitian random matrices. We obtain new estimates related to the local semi-circular law for the empirical spectral distribution of these matrices when the 4th moments of their entries are controlled.
Similar content being viewed by others
References
Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)
Bai, Z.D., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Springer Series in Statistics, 2nd edn. Springer, New York (2010)
Cacciapuoti, C., Maltsev, A., Schlein, B.: Bounds for the Stieltjes transform and the density of states of Wigner matrices. Probab. Theory Relat. Fields 163(1–2), 1–59 (2015)
Dinh T.-C., Nguyen V.-A.: Large deviation theorem for some beta-ensembles. Trans. A.M.S., to appear. arXiv:1603.03643
Dinh, T.-C., Sibony, N.: Dynamics in Several Complex Variables: Endomorphisms of Projective Spaces and Polynomial-like Mappings. Holomorphic Dynamical Systems. Lecture Notes in Mathematics, vol. 1998, pp. 165–294. Springer, Berlin (2010)
Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdös–Rényi graphs I: local semicircle law. Ann. Probab. 41(3B), 2279–2375 (2013)
Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: The local semicircle law for a general class of random matrices. Electron. J. Probab. 18(59), 58 (2013)
Erdös, L., Péché, S., Ramírez, J.A., Schlein, B., Yau, H.-T.: Bulk universality for Wigner matrices. Commun. Pure Appl. Math. 63(7), 895–925 (2010)
Erdös, L., Ramírez, J., Schlein, B., Tao, T., Vu, V., Yau, H.-T.: Bulk universality for Wigner hermitian matrices with subexponential decay. Math. Res. Lett. 17(4), 667–674 (2010)
Erdös, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)
Erdös, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. 3, 436–479 (2010)
Erdös, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)
Guionnet, A., Zeitouni, O.: Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5, 119–136 (2000)
Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library, vol. 7, 3rd edn. North-Holland Publishing Co., Amsterdam (1990)
Pastur, L.A.: Spectra of random self adjoint operators. Uspekhi Mat. Nauk 28(1), 3–64 (1973)
Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften, vol. 299. Springer, Berlin (1992)
Schaeffer, A.C.: Inequalities of A. Markoff and S. Bernstein for polynomials and related functions. Bull. Am. Math. Soc 47, 565–579 (1941)
Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)
Tao, T., Vu, V.: Random covariance matrices: universality of local statistics of eigenvalues. Ann. Probab. 40(3), 1285–1315 (2012)
Tao, T., Vu, V.: Random matrices: sharp concentration of eigenvalues. Random Matrices Theory Appl. 2(3), 1350007 (2013)
Tao, T., Vu, V.: Random Matrices: The Four-Moment Theorem for Wigner Ensembles. Random Matrix Theory, Interacting Particle Systems, and Integrable systems, Publications of the Research Institute for Mathematical Sciences, vol. 65. Cambridge University Press, New York (2014)
Tao T., Vu V.: Random matrices: the universality phenomenon for Wigner ensembles. Modern aspects of random matrix theory. In: Proceedings of Symposium Applied Mathematics, vol. 72, pp. 121–172. American Mathematics Society, Providence, RI (2014)
Tran, L.V., Vu, V., Wang, K.: Sparse random graphs: eigenvalues and eigenvectors. Random Struct. Algorithms 42(1), 110–134 (2013)
Tsuji, M.: Potential Theory in Modern Function Theory. Reprinting of the 1975 Original. Chelsea Publishing Co., New York (1959)
Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)
Acknowledgements
This work was supported by the Start-Up Grant R-146-000-204-133 from National University of Singapore. It was partially written during my visit at Paris 11 University. I would like to thank Viet-Anh Nguyen and Nessim Sibony for their hospitality and help. I also would like to thank the referee for his remarks which allow me to improve the presentation of this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
In memory of Professor Gennadi Henkin.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dinh, TC. Large Deviation Theorem for Zeros of Polynomials and Hermitian Random Matrices. J Geom Anal 30, 2558–2580 (2020). https://doi.org/10.1007/s12220-017-9951-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12220-017-9951-8