Skip to main content
Log in

Large Deviation Theorem for Zeros of Polynomials and Hermitian Random Matrices

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We give abstract versions of the large deviation theorem for the distribution of zeros of polynomials and apply them to the characteristic polynomials of Hermitian random matrices. We obtain new estimates related to the local semi-circular law for the empirical spectral distribution of these matrices when the 4th moments of their entries are controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Bai, Z.D., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Springer Series in Statistics, 2nd edn. Springer, New York (2010)

    Book  Google Scholar 

  3. Cacciapuoti, C., Maltsev, A., Schlein, B.: Bounds for the Stieltjes transform and the density of states of Wigner matrices. Probab. Theory Relat. Fields 163(1–2), 1–59 (2015)

    Article  MathSciNet  Google Scholar 

  4. Dinh T.-C., Nguyen V.-A.: Large deviation theorem for some beta-ensembles. Trans. A.M.S., to appear. arXiv:1603.03643

  5. Dinh, T.-C., Sibony, N.: Dynamics in Several Complex Variables: Endomorphisms of Projective Spaces and Polynomial-like Mappings. Holomorphic Dynamical Systems. Lecture Notes in Mathematics, vol. 1998, pp. 165–294. Springer, Berlin (2010)

    MATH  Google Scholar 

  6. Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdös–Rényi graphs I: local semicircle law. Ann. Probab. 41(3B), 2279–2375 (2013)

    Article  MathSciNet  Google Scholar 

  7. Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: The local semicircle law for a general class of random matrices. Electron. J. Probab. 18(59), 58 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Erdös, L., Péché, S., Ramírez, J.A., Schlein, B., Yau, H.-T.: Bulk universality for Wigner matrices. Commun. Pure Appl. Math. 63(7), 895–925 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Erdös, L., Ramírez, J., Schlein, B., Tao, T., Vu, V., Yau, H.-T.: Bulk universality for Wigner hermitian matrices with subexponential decay. Math. Res. Lett. 17(4), 667–674 (2010)

    Article  MathSciNet  Google Scholar 

  10. Erdös, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)

    Article  MathSciNet  Google Scholar 

  11. Erdös, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. 3, 436–479 (2010)

    Article  MathSciNet  Google Scholar 

  12. Erdös, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)

    Article  MathSciNet  Google Scholar 

  13. Guionnet, A., Zeitouni, O.: Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5, 119–136 (2000)

    Article  MathSciNet  Google Scholar 

  14. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library, vol. 7, 3rd edn. North-Holland Publishing Co., Amsterdam (1990)

    MATH  Google Scholar 

  15. Pastur, L.A.: Spectra of random self adjoint operators. Uspekhi Mat. Nauk 28(1), 3–64 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften, vol. 299. Springer, Berlin (1992)

    Book  Google Scholar 

  17. Schaeffer, A.C.: Inequalities of A. Markoff and S. Bernstein for polynomials and related functions. Bull. Am. Math. Soc 47, 565–579 (1941)

    Article  MathSciNet  Google Scholar 

  18. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)

    Article  MathSciNet  Google Scholar 

  19. Tao, T., Vu, V.: Random covariance matrices: universality of local statistics of eigenvalues. Ann. Probab. 40(3), 1285–1315 (2012)

    Article  MathSciNet  Google Scholar 

  20. Tao, T., Vu, V.: Random matrices: sharp concentration of eigenvalues. Random Matrices Theory Appl. 2(3), 1350007 (2013)

    Article  MathSciNet  Google Scholar 

  21. Tao, T., Vu, V.: Random Matrices: The Four-Moment Theorem for Wigner Ensembles. Random Matrix Theory, Interacting Particle Systems, and Integrable systems, Publications of the Research Institute for Mathematical Sciences, vol. 65. Cambridge University Press, New York (2014)

    Google Scholar 

  22. Tao T., Vu V.: Random matrices: the universality phenomenon for Wigner ensembles. Modern aspects of random matrix theory. In: Proceedings of Symposium Applied Mathematics, vol. 72, pp. 121–172. American Mathematics Society, Providence, RI (2014)

  23. Tran, L.V., Vu, V., Wang, K.: Sparse random graphs: eigenvalues and eigenvectors. Random Struct. Algorithms 42(1), 110–134 (2013)

    Article  MathSciNet  Google Scholar 

  24. Tsuji, M.: Potential Theory in Modern Function Theory. Reprinting of the 1975 Original. Chelsea Publishing Co., New York (1959)

    MATH  Google Scholar 

  25. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Start-Up Grant R-146-000-204-133 from National University of Singapore. It was partially written during my visit at Paris 11 University. I would like to thank Viet-Anh Nguyen and Nessim Sibony for their hospitality and help. I also would like to thank the referee for his remarks which allow me to improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Cuong Dinh.

Additional information

In memory of Professor Gennadi Henkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, TC. Large Deviation Theorem for Zeros of Polynomials and Hermitian Random Matrices. J Geom Anal 30, 2558–2580 (2020). https://doi.org/10.1007/s12220-017-9951-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9951-8

Keywords

Mathematics Subject Classification

Navigation