Abstract
We prove Rbisectoriality and boundedness of the \(H^\infty \)functional calculus in \(L^p\) for all \(1<p<\infty \) for the Hodge–Dirac operator associated with Witten Laplacians on complete Riemannian manifolds with nonnegative Bakry–Emery Ricci curvature on kforms.
Introduction
The Witten Laplacian was introduced by Witten [55] as a deformation of the Hodge Laplacian on a complete Riemannian manifold M and has been subsequently studied by many authors; see [9, 13, 15, 23, 26, 29, 30, 44,45,46, 56] and the references cited therein. The Witten Laplacian associated with a smooth strictly positive function \(\rho :M\rightarrow \mathbb {R}\) is the operator
where \(\Delta = \nabla ^*\nabla \) is the (negative) LaplaceBeltrami operator and \(\nabla \) is the gradient. Identifying functions with 0forms, we have
where \(\,\mathrm {d}_\rho \) is the \(L^2\)realisation of the exterior derivative \(\,\mathrm {d}\) with respect to the measure \(m(\mathrm {d}x) = \rho (x) \,\mathrm {d}x\) on M, and \(\,\mathrm {d}_\rho ^*\) is the adjoint operator. The representation (1.1) can be used to define the Witten Laplacian for kforms for \(k \ne 0\). In the special case \(M = \mathbb {R}^n\) and \(\rho (x) = \exp (\,\frac{1}{2}x^2)\), \(L_\rho \) corresponds to the OrnsteinUhlenbeck operator.
Let \(m(\mathrm{d}x) = \rho (x)\,\mathrm {d}x\) be the weighted volume measure on M. Generalising the celebrated Meyer inequalities for the OrnsteinUhlenbeck operator, Bakry [9] proved boundedness of the Riesz transform \(\nabla L_\rho ^{\,1/2}\) on \(L^p(M,m)\) for all \(1<p<\infty \) under a curvature condition on M. An extension of this result to the corresponding \(L^p\)spaces of kforms is contained in the same paper. These results have been subsequently extended into various directions. As a sample of the extensive literature on this topic, we mention [15, 44,45,46, 56] (for the Witten Laplacian); see also [3, 4, 10, 19, 37, 42, 47, 49, 52, 54] (for the LaplaceBeltrami operator), [17, 31, 51] (for the Hodgede Rham Laplacian), and [11] (for subelliptic operators).
The aim of the present paper is to develop Bakry’s result along a different line by analysing the Hodge–Dirac operator
from the point of view of its functional calculus properties. Our main result can be stated as follows (the relevant definitions are given in the main body of the paper).
Theorem 1.1
If M has nonnegative Bakry–Emery Ricci curvature on kforms for all \(1\le k\le n\), then the Hodge–Dirac operator \(D_\rho \) is Rbisectorial and admits a bounded \(H^\infty \)calculus in \(L^p(\Lambda TM,m)\) for all \(1<p<\infty \).
By standard arguments (cf. [8]), the boundedness of the \(H^\infty \)calculus of \(D_\rho \) implies (by considering the operator sgn\((D_\rho )\), which is then well defined through the functional calculus) the boundedness of the Riesz transform \(D_\rho L_\rho ^{1/2} = \mathrm{sgn}(D_\rho )\). As such our results may be thought of as a strengthening of those in [9].
In the unweighted case \(\rho \equiv 1\), the second assertion of Theorem 1.1 is essentially known, although we are not aware of a place where it is formulated explicitly or in some equivalent form. It can be pieced together from known results as follows: Firstly, [6, Theorem 5.12] asserts that the unweighted Hodge–Dirac operator D has a bounded \(H^\infty \)calculus on the Hardy space \(H^p(\Lambda TM)\), even for \(1\le p\le \infty \), provided the volume measure has the socalled doubling property. By the Bishop comparison theorem (see [12]), this property is always satisfied if M has nonnegative Ricci curvature. Secondly, for \(1<p<\infty \), this Hardy space is subsequently identified in [6, Theorem 8.5] to be the closure in \(L^p(\Lambda TM)\) of the range of D, provided the heat kernel associated with L satisfies Gaussian bounds on kforms for all \(0\le k\le n\). When M has nonnegative Ricci curvature, such bounds were proved in [43] for 0forms, i.e. for functions on M. The bounds for kforms then follow, under the curvature assumptions in the present paper, via pointwise domination of the heat kernel on kforms by the heat kernel for 0forms (cf. (3.7) below). Modulo the kernelrange decomposition \(L^p(\Lambda TM,m) = \mathsf {N}(D) \oplus \overline{\mathsf {R}(D)}\) (which follows from Rbisectorialy proved in the present paper, but could also be established on the basis of other known results), this gives the boundedness of the \(H^\infty \)calculus in \(L^p(\Lambda TM,m)\) in the unweighted case.
In the weighted case, this approach cannot be pursued due to the absence of the doubling property and Gaussian bounds. Instead, our approach exploits the fact, proved in [56], that the nonnegativity of the Bakry–Emery Ricci curvature implies, among other things, square function estimates on kforms.
The analogue of Theorem 1.1 for the Hodge–Dirac operator associated with the OrnsteinUhlenbeck operator has been established, in a more general formulation, in [48]. The related problem of the \(L^p\)boundedness of the \(H^\infty \)calculus of Hodge–Dirac operators associated with the Kato square root problem was initiated by the influential paper [8] and has been studied by many authors [7, 24, 32,33,34, 51].
The organisation of the paper is as follows: After a brief introduction to R(bi)sectorial operators and \(H^\infty \)calculi in Sect. 2, we introduce the Witten Laplacian \(L_\rho \) in Sect. 3 and recall some of its properties. Among others we prove that it is Rsectorial of angle less than \(\frac{1}{2}\pi \) and admits a bounded \(H^\infty \)calculus in \(L^p\) for \(1<p<\infty \). In Sect. 4 this result, together with the identity \(D_\rho ^2 = L_\rho \), is used to prove the corresponding assertions for the Hodge–Dirac operator \(D_\rho \).
On some occasions, we will use the notation \(a\lesssim b\) to signify that there exists a constant C such that \(a \le Cb\). To emphasise the dependence of C on parameters \(p_1\), \(p_2\), ..., we shall write \(a \lesssim _{p_1,p_2,\ldots } b\). Finally, we write \(\eqsim \) (respectively, \(\eqsim _{p_1,p_2,\ldots }\)) if both \(a\lesssim b\) and \(b\lesssim a\) (respectively, \(a \lesssim _{p_1,p_2,\ldots } b\) and \(b \lesssim _{p_1,p_2,\ldots } a\)) hold.
R(Bi)sectorial Operators and the \(H^\infty \)functional Calculus
In this section, we present a brief overview of the various notions from operator theory used in this paper.
Rboundedness
Let X and Y be Banach spaces and let \((r_j)_{j\ge 1}\) be a sequence of independent Rademacher variables defined on a probability space \((\Omega ,\mathbb {P})\), i.e. \(\mathbb {P}(r_j= 1) = \mathbb {P}(r_j=\,1) = \tfrac{1}{2}\) for each j.
A collection of bounded linear operators \(\mathscr {T} \subseteq \mathscr {L}(X,Y)\) is said to be Rbounded if there exists a \(C\ge 0\) such that for all \(M=1,2,\ldots \) and all choices of \(x_1, \ldots , x_M \in X\) and \(T_1, \ldots , T_M \in \mathscr {T}\) we have
where \(\mathbb {E}\) denotes the expectation with respect to \(\mathbb {P}\). By considering the case \(M=1\), one sees that every Rbounded family of operators is uniformly bounded. In Hilbert spaces the converse holds, as is easy to see by expanding the square of the norm as an inner product and using that \(\mathbb {E}r_mr_n = \delta _{mn}\).
Motivated by certain square function estimates in harmonic analysis, the theory of Rboundedness was initiated in [18] and has found widespread use in various areas of analysis, among them parabolic PDE, harmonic analysis and stochastic analysis. We refer the reader to [21, 35, 36, 40] for detailed accounts.
Sectorial Operators
For \(\sigma \in (0,\pi )\), we consider the open sector
A closed densely defined operator \((A,\mathsf {D}(A))\) acting in a complex Banach space X is said to be sectorial of angle \(\sigma \in (0,{\pi })\) if \(\sigma (A) \subseteq \overline{\Sigma _\sigma ^+}\) and the set \(\{ \lambda (\lambda A)^{1} : \lambda \notin \overline{\Sigma _\vartheta ^+}\}\) is bounded for all \(\vartheta \in (\sigma ,{\pi })\). The least angle of sectoriality is denoted by \(\omega ^+(A)\). If A is sectorial of angle \(\sigma \in (0,\pi )\) and the set \(\{ \lambda (\lambda A)^{1} : \lambda \notin \overline{\Sigma _\vartheta ^+}\}\) is Rbounded for all \(\vartheta \in (\sigma ,{\pi })\), then A is said to be Rsectorial of angle \(\sigma \). The least angle of Rsectoriality is denoted by \(\omega _R^+(A).\)
Remark 2.1
We wish to point out that most authors (including [21, 36, 40]) impose the additional requirements that A be injective and have dense range. In the setting considered here, this would be inconvenient: already in the special case of the OrnsteinUhlenbeck operator, the kernel is nonempty. It is worth noting, however, (see [28, Proposition 2.1.1(h)]) that a sectorial operator A on a reflexive Banach space X induces a direct sum decomposition
The part of A in \(\overline{\mathsf {R}(A)}\) is sectorial and injective and has dense range. Thus, A decomposes into a trivial part and a part that is sectorial in the more restrictive sense of [21, 36, 40]. Since we will be working with \(L^p\)spaces in the reflexive range \(1<p<\infty \) the results of [21, 36, 40] can be applied along this decomposition.
The typical example of a sectorial operator is the realisation of the Laplace operator \(\Delta \) in \(L^p(\mathbb {R}^n)\), \(1\le p<\infty \), and this operator is Rsectorial if \(1<p<\infty \). More general examples, including the LaplaceBeltrami operator, are discussed in [21, 36, 40].
Bisectorial Operators
The theory of sectorial operators has a bisectorial counterpart. We refer the reader to [1, 5, 22] for more information. For \(0<\sigma <\frac{1}{2}\pi \), we set \(\Sigma _\sigma ^:= \,\Sigma _\sigma ^+\) and
The set \(\Sigma _\sigma ^\pm \) is called the bisector of angle \(\sigma \). A closed densely defined linear operator \((A,\mathsf {D}(A))\) acting in a complex Banach space X is called bisectorial of angle \(\sigma \) if \(\sigma (A) \subseteq \overline{\Sigma _\sigma ^\pm }\) and the set \(\{ \lambda (\lambda A)^{1} : \lambda \notin \overline{\Sigma _\vartheta ^\pm }\}\) is bounded for all \(\vartheta \in (\sigma ,\frac{1}{2}{\pi })\). The least angle of bisectoriality is denoted by \(\omega ^\pm (A)\). If A is bisectorial and the set \(\{ \lambda (\lambda A)^{1} : \lambda \notin \overline{\Sigma _\vartheta ^\pm }\}\) is Rbounded for all \(\vartheta \in (\sigma ,\frac{1}{2}{\pi })\), then A is said to be Rbisectorial of angle \(\sigma \in (0,\frac{1}{2}{\pi })\). The least angle of Rbisectoriality is denoted by \(\omega _R^\pm (A).\)
Remark 2.2
If A is bisectorial (of angle \(\vartheta \)), then iA is sectorial (of angle \(\frac{1}{2}\pi +\vartheta \)), and therefore Remark 2.1 applies to bisectorial operators as well.
Typical examples of bisectorial operators are \(\pm i \,\mathrm {d}/\,\mathrm {d}x\) in \(L^p(\mathbb {R})\) and the Hodge–Dirac operator \(\Bigl (\begin{matrix} 0 &{} \nabla ^*\\ \nabla &{} 0 \end{matrix}\Bigr )\) on \(L^p(\mathbb {R}^n)\oplus L^p(\mathbb {R}^n;\mathbb {C}^n)\), \(1\le p<\infty \). These operators are Rbisectorial if \(1<p<\infty \).
The \(H^\infty \)Functional Calculus
In a Hilbert space setting, the \(H^\infty \)functional calculus was introduced in [50]. It was extended to the more general setting of Banach spaces in [20]. For detailed treatments, we refer the reader to [21, 28, 36, 40].
Let \(H^\infty (\Sigma _\sigma ^+)\) be the space of all bounded holomorphic functions on \(\Sigma _\sigma ^+\), and let \(H^1(\Sigma _\sigma ^+)\) denote the space of all holomorphic functions \(\psi :\Sigma _\sigma ^+\rightarrow \mathbb {C}\) satisfying
If A is a sectorial operator and \(\psi \) is a function in \(H^1(\Sigma _\sigma ^+)\) with \(0< \omega ^+(A)< \sigma <\pi \), we may define the bounded operator \(\psi (A)\) on X by the Dunford integral
where \(\omega ^+(A)<\nu < \sigma \) and \(\partial {\Sigma _{\nu }^+}\) is parametrised counterclockwise. By Cauchy’s theorem, this definition does not depend on the choice of \(\nu .\)
A sectorial operator A on X is said to admit a bounded\(H^\infty (\Sigma _{\sigma }^+)\)functional calculus, or a bounded\(H^\infty \)calculus of angle\(\sigma \), if there exists a constant \(C_\sigma \ge 0\) such that for all \(\psi \in H^1(\Sigma _\sigma ^+)\cap H^\infty (\Sigma _\sigma ^+)\) and all \(x\ \in X\), we have
where \(\Vert \psi \Vert _{\infty }=\sup _{z\in \Sigma _\sigma ^+}\psi (z)\). The infimum of all angles \(\sigma \) for which such a constant C exists is denoted by \(\omega _{H^\infty }^+(A).\) We say that a sectorial operator A admits a bounded\(H^\infty \)calculus if it admits a bounded \(H^\infty (\Sigma _{\sigma }^+)\)calculus for some \(0<\sigma <\pi \).
Typical examples of operators having a bounded \(H^\infty \)calculus include the sectorial operators mentioned in Sect. 2.2. In fact, it requires quite some effort to construct sectorial operators without a bounded \(H^\infty \)calculus, and to this date only rather artificial constructions of such examples are known.
Replacing the role of sectors by bisectors, the above definitions can be repeated for bisectorial operators. The examples of bisectorial operators mentioned in Sect. 2.3 have a bounded \(H^\infty \)calculus.
R(bi)sectorial Operators and Bounded \(H^\infty \)functional Calculi
The following result is a straightforward generalisation of [5, Proposition 8.1] and [1, Sect. H] (see [36, Chapter 10] for the present formulation):
Proposition 2.3
Suppose that A is an Rbisectorial operator on a Banach space of finite cotype. Then \(A^2\) is Rsectorial, and for each \(\omega \in (0,\frac{1}{2}\pi )\) the following assertions are equivalent:

(1)
A admits a bounded \(H^\infty (\Sigma _\omega ^\pm )\)calculus;

(2)
\(A^2\) admits a bounded \(H^\infty (\Sigma _{2\omega }^+)\)calculus.
The Witten Laplacian
Let us begin by introducing some standard notations from differential geometry. For unexplained terminology, we refer to [27, 41].
Throughout this paper, we work on a complete Riemannian manifold (M, g) of dimension n. The exterior algebra over the tangent bundle TM is denoted by
Smooth sections of \(\Lambda ^kTM\) are referred to as kforms. We set
where \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) denotes the vector space of smooth, compactly supported kforms. The inner product of two kforms \(\,\mathrm {d}x^{i_1} \wedge \cdots \wedge \mathrm {d}x^{i_k}\) and \(\,\mathrm {d}x^{j_1} \wedge \cdots \wedge \mathrm {d}x^{j_k}\) is defined, in a coordinate chart (U, x), as
where \((g^{ij})\) is the inverse of the matrix \((g_{ij})\) representing g in the chart (U, x). This definition extends to general kforms by linearity. For smooth sections \(\omega ,\eta \) of \(\Lambda TM\), say \(\omega = \sum _{k=0}^n \omega ^k\) and \(\eta = \sum _{k=0}^n \eta ^k\), we define
and we write \(\omega  := (\omega \cdot \omega )^{1/2}.\)
We now fix a strictly positive function \(\rho \in C^\infty (M)\) and consider the measure
on M, where \(\,\mathrm {d}x\) is the volume measure. For \(1 \le p < \infty \), we define \(L^p(\Lambda ^kTM,m)\) to be the Banach space of all measurable kforms for which the norm
is finite, identifying two such forms when they agree malmost everywhere on M. Equivalently, we could define this space as the completion of \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) with respect to the norm \(\Vert \cdot \Vert _p\). Finally, we define
and endow this space with the norm \(\Vert \cdot \Vert _p\) defined by \(\Vert \omega \Vert _p = \sum _{k=0}^n \Vert \omega ^k\Vert _p^p\), where \(\omega = \sum _{k=0}^n \omega ^k\) for kforms \(\omega ^k\). In the case of \(p = 2\), we will denote the \(L^2(\Lambda ^kTM,m)\) inner product of two kforms \(\omega ,\eta \in L^2(\Lambda ^kTM,m)\) by
Here, the subscript \(\rho \) indicates the dependence of the inner product on the function \(\rho \). When considering the \(L^2(\Lambda ^kTM,\mathrm {d}x)\) inner product, we will simply write \(\langle \cdot ,\cdot \rangle \).
The exterior derivative, defined a priori only on \(C_\mathrm{c}^\infty (\Lambda TM)\), is denoted by \(\mathrm {d}\). Its restriction as a linear operator from \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) to \(C_\mathrm{c}^\infty (\Lambda ^{k+1}TM)\) is denoted by \(\mathrm {d}_k\). As a densely defined operator from \(L^2(\Lambda ^kTM,m)\) to \(L^2(\Lambda ^{k+1}TM,m)\), \(\mathrm {d}_k\) is easily checked to be closable. With slight abuse of notation, its closure will again be denoted by \(\mathrm {d}_k\). Its adjoint is well defined as a closed densely defined operator from \(L^2(\Lambda ^{k+1}TM,m)\) to \(L^2(\Lambda ^{k}TM,m)\). We will denote this adjoint operator by \(\delta _k\). It maps \(C_\mathrm{c}^\infty (\Lambda ^{k+1}TM)\) into \(C_\mathrm{c}^\infty (\Lambda ^kTM)\).
Remark 3.1
It would perhaps be more accurate to follow the notation used in the Introduction and denote the operators \(\mathrm {d}\), \(\mathrm {d}_k\) and \(\delta _k\) by \(\mathrm {d}_\rho \), \(\mathrm {d}_{\rho ,k}\) and \(\mathrm {d}^*_{\rho ,k}\), respectively, to bring out their dependence on \(\rho \), but this would unnecessarily burden the notation.
In Lemma 3.3 below, we will state an identity relating \(\delta _k\) to the operator \(\mathrm {d}_k^*\), the adjoint of \(\mathrm {d}_k\) with respect to the volume measure \(\mathrm {d}x\). For this purpose, we need the following definition. Let \(k \in \{1,\ldots ,n\}\). Let \(\omega \) be a kform and X a smooth vector field. We define \(\iota (X)\omega \) as the \((k1)\)form given by
for smooth vector fields \(Y_1,\ldots ,Y_{k1}\). We refer to \(\iota \) as the contraction on the first entry with respect toX. The next two lemmas are implicit in [9]; we include proofs for the reader’s convenience.
Lemma 3.2
For all smooth kforms \(\omega \) and \((k1)\)forms \(\epsilon \) and compactly supported smooth functions f on M, we have
where \(\,\mathrm {d}f^*\) is the smooth vector field associated to the 1form \(\,\mathrm {d}f\) by duality with respect to the Riemannian metric g.
Proof
Working in a coordinate chart (U, x), by linearity it suffices to prove the claim for \(\omega = g\mathrm {d}x^{i_1} \wedge \cdots \wedge \mathrm {d}x^{i_k}\) where \(1 \le i_1< \cdots < i_k \le n\) and \(\epsilon = h\mathrm {d}x^{j_1} \wedge \cdots \wedge \mathrm {d}x^{j_{k1}}\) where \(1 \le j_1< \cdots < j_{k1} \le n\). In that case, we find
Here, the third line follows by recalling that the inner product can be seen as the determinant of a matrix, and that we can develop this determinant to the row of \(\mathrm {d}f\). The last equality follows by simply expanding \(\iota (\mathrm {d}f^*)\omega \). \(\square \)
Lemma 3.3
If \(\omega \) is a kform, then
where \(\,\mathrm {d}(\log \rho )^*\) is the smooth vector field associated to the 1form \(\,\mathrm {d}(\log \rho )\) by duality with respect to the Riemannian metric g.
Proof
Suppose that \(\omega \) is a kform. For any \((k1)\)form \(\epsilon \), we have
where we used that kforms are linear over \(C^\infty \) functions to arrive at the second line. The last equality follows from the previous lemma. The claim now follows. \(\square \)
Definition 3.4
The Witten Laplacian onkforms associated with \(\rho \) is the operator \(L_k\) defined on \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) as
In the special case that \(\rho \equiv 1\), we recover the Hodgede Rham Laplacian
Using Lemma 3.3 for 1forms, we obtain the following identity for the Witten Laplacian on functions:
where the second identity follows by duality via the Riemannian inner product. The BochnerLichnérowiczWeitzenböck formula (cf. [9, Sect. 5]) asserts that
where \(\widetilde{Q}_k\) is a quadratic form which depends on the Ricci curvature tensor (see [9, Sect. 5]). Notice that in [9] there is an additional term \(\frac{1}{k!}\), which comes from the fact that we define \(\nabla \omega ^2\) in a similar way as for kforms, while [9] defines it in the sense of tensors.
An analogue of (3.1) may be derived for the Witten Laplacian as follows: Firstly, if we expand the above definitions using Lemma 3.3, we can express \(L_k\) in terms of \(\Delta _k\):
Obviously, when \(k = 0\) the second term on the righthand side vanishes, while for \(k = n\) the last term vanishes. Inserting (3.2) into equation (3.1), we obtain the following variant of the BochnerLichnérowiczWeitzenböck formula:
where
As \(\widetilde{Q}_k\) only depends on the Ricci curvature tensor, we see that \(Q_k\) only depends on the Ricci curvature tensor and the positive function \(\rho \). One has \(Q_0 = 0\), while for \(k = 1\) one has \(Q_1(\omega ,\omega ) = \mathrm {Ric}(\omega ^*,\omega ^*)  \nabla \nabla \log \rho (\omega ^*,\omega ^*)\) (see [9]). The latter is usually referred to as the Bakry–Emery Ricci curvature. In what follows, we will refer to \(Q_k\) as the Bakry–Emery Ricci curvature onkforms.
The Main Hypothesis
We are now ready to state the key assumption, which is a special case of the one in Bakry [9]:
Hypothesis 3.5
(Nonnegative curvature condition) For all \(k = 1,\ldots ,n\) the Bakry–Emery Ricci curvature on kforms is nonnegative, i.e. we have \(Q_k(\omega ,\omega ) \ge 0\) for all kforms \(\omega \).
We assume nonnegativity of the Bakry–Emery Ricci curvature, rather than its boundedness from below (as done in [9]), as in the case of (negative) lower bounds one obtains inhomogeneous Riesz estimates only (see [9, Theorem 4.1,5.1]). Also note (see [9]) that to obtain boundedness of the Riesz transform on kforms, not only does one need nonnegativity of \(Q_k\), but also of \(Q_{k1}\) and \(Q_{k+1}\).
As an example, we will show what this assumption means in the case of \(M=\mathbb {R}^n\). The result of our computation is likely to be known, but for the reader’s convenience we provide the details of the computation. Note that, the case \(k=1\) is much easier due to the simple coordinate free expression for the Bakry–Emery Ricci curvature \(Q_1\). In particular, we will see that this assumption is satisfied in the case of the OrnsteinUhlenbeck operator on \(\mathbb {R}^n\).
Example 3.6
Let \(M = \mathbb {R}^n\) with its usual Euclidean metric and consider a smooth strictly positive function \(\rho \) on \(\mathbb {R}^n\). Let \(k \in \{1,2\ldots ,n\}\). We will derive a sufficient condition on \(\rho \) so that \(Q_k(\omega ,\omega ) \ge 0\) for all kforms \(\omega \).
Since \(\mathbb {R}^n\) has zero curvature, \(\widetilde{Q}_k(\omega ,\omega ) = 0\) for all kforms \(\omega \). Focussing on the remaining terms in (3.4), we will first show that \(Q_k\) has the ‘Pythagorean’ property described in (3.5) below. Suppose
where each \(\omega ^{(j)}\) is of the form \(f^{(j)} \mathrm {d}x^{i_1^{(j)}} \wedge \cdots \wedge \mathrm {d}x^{i_k^{(j)}}\) with \(1\le i_1^{(j)}< \cdots < i_k^{(j)}\le n\), and write \(I^{(j)} = \{i_1^{(j)}, \ldots , i_k^{(j)}\}\). If the index sets \(I^{(1)}, \ldots , I^{(N)}\) are all different, then
To keep notations simple, we will prove (3.5) for the case \(N=2\); the reader will have no difficulty in generalising the argument to general N.
So let us take kforms \(\omega _1 = f \mathrm {d}x^{i_1} \wedge \cdots \wedge \mathrm {d}x^{i_k}\), where \(1 \le i_1< \cdots < i_k \le n\) and \(\omega _2 = g\mathrm {d}x^{j_1} \wedge \cdots \wedge \mathrm {d}x^{j_k}\), where \(1 \le j_1< \cdots < j_k \le n\) and suppose that \((i_1,\ldots ,i_k) \ne (j_1,\ldots ,j_k)\). Now consider \(\omega = \omega _1 + \omega _2\). Since the set of ‘elementary’ kforms
is an orthogonal basis for \(\Lambda ^kT\mathbb {R}^n\), we have \(\omega ^2 = \omega _1^2 + \omega _2^2\) and consequently,
Furthermore, for any smooth vector field X,
and
Now
and
Consequently,
By orthogonality, we thus obtain that
Obviously, the same holds if we interchange \(\omega _1\) and \(\omega _2\). Putting everything together, we obtain \(Q_k(\omega ,\omega ) = Q_k(\omega _1,\omega _1) + Q_k(\omega _2,\omega _2)\). This concludes the proof of (the case \(N=2\) of) (3.5).
Now consider a kform \(\omega \) of the form \(f \mathrm {d}x^{i_1} \wedge \cdots \wedge \mathrm {d}x^{i_k}\) with \(1 \le i_1< \cdots < i_k \le n\). To simplify notations a bit, we shall suppose that \((i_1,\ldots ,i_k) = (1,\ldots ,k)\). We compute the three last terms on the righthand side of (3.4).
As to the first term, from \(\omega ^2 = f^2\), we obtain
Turning to the second term,
Hence
Computing the final term, we have
From this, it follows that
Noting that only the terms with \(i = j\) can contribute a nonzero contribution to the inner product with \(\omega \), we obtain
Collecting everything, we find that
We thus see that \(Q_k(\omega ,\omega ) \ge 0\) precisely when \(\sum _{i=1}^k \partial _i^2(\log \rho ) \le 0\). Recalling the simplification for notational purposes, we conclude that \(Q_k(\omega ,\omega ) \ge 0\) for all kforms \(\omega \) precisely if for all \(1 \le i_1< \cdots < i_k \le n\) it holds that
In the special case \(\rho (x) = e^{\frac{1}{2}x^2}\) which corresponds to the OrnsteinUhlenbeck operator, this condition is clearly satisfied. Indeed, for any \(j =1,\ldots ,n\), we have \(\partial _j^2(\log \rho ) = \,1\).
We can use the previous example to consider a more general situation.
Example 3.7
Let (M, g) be a complete Riemannian manifold. Suppose the quadratic form \(\tilde{Q}_k\) depending solely on the Ricci curvature is bounded from below for all \(1\le k\le n\), i.e. there exist constants \(a_1,\ldots ,a_n\) such that for all kforms \(\omega \), we have
Fix \(k \in \{1,\ldots ,n\}\). In normal coordinates around a point \(p\in M\), the expression for \(Q_k(\omega ,\omega )\) at p reduces to the one of the previous examples. Consequently, \(Q_k(\omega ,\omega ) \ge 0\) for any kform \(\omega \) if for any \(p \in M\) and any \(1 \le i_1< \cdots < i_k \le n\) one has \(\sum _{r=1}^k \partial _{i_r}^2(\log \rho )(p) \le a_k\), where the last expression is in normal coordinates around p.
The Heat Semigroup Generated by \(L_k\)
We return to the general setting described at the beginning of this section. For each \(k=0,1,\dots ,n\) the operator \(L_k\) is essentially selfadjoint on \(L^2(\Lambda ^kTM,m)\) (see [9, 54] for the case \(\rho \equiv 1\) and [56]) and satisfies \(\langle L_k\omega ,\omega \rangle _\rho = \mathrm {d}_k \omega ^2+ \delta _{k1}\omega ^2\ge 0\) for all smooth kforms \(\omega \). Consequently, its closure is a selfadjoint operator on \(L^2(\Lambda ^kTM,m)\). With slight abuse of notation, we shall denote this closure by \(L_k\) again. By the spectral theorem, \(L_k\) generates a strongly continuous contraction semigroup
on \(L^2(\Lambda ^kTM,m)\).
From now on, we assume that Hypothesis 3.5 is satisfied. As was shown in [9, 56], under this assumption, the restriction of \((P_t^k)_{t\ge 0}\) to \(L^p(\Lambda ^kTM,m)\cap L^2(\Lambda ^kTM,m)\) extends to a strongly continuous contraction semigroup on \(L^p(\Lambda ^kTM,m)\) for any \(p \in [1,\infty )\). These extensions are consistent, i.e. the semigroups \((P_t^k)_{t\ge 0}\) on \(L^{p_i}(\Lambda ^kTM,m)\), \(i=1,2\), agree on the intersection \(L^{p_1}(\Lambda ^kTM,m) \cap L^{p_2}(\Lambda ^kTM,m)\).
The infinitesimal generator of the semigroup \((P_t^k)_{t\ge 0}\) in \(L^p(\Lambda ^kTM,m)\) will be denoted (with slight abuse of notation) by \(L_k\) and its domain by \({\mathsf D}_p(L_k)\).
As an operator acting in \(L^2(\Lambda ^kTM,m)\), \(L_k\) is the closure of an operator defined a priori on \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) and therefore the inclusion \(C_\mathrm{c}^\infty (\Lambda ^kTM)\subseteq {\mathsf D}_2(L_k)\) trivially holds. The definition of the domain \({\mathsf D}_p(L_k)\) is indirect, however, and based on the fact that \(L_k\) generates a strongly continuous semigroup on \(L^p(\Lambda ^kTM,m)\). Nevertheless we have:
Lemma 3.8
\(C_\mathrm{c}^\infty (\Lambda ^kTM)\) is contained in \({\mathsf D}_p(L_k)\) for all \(1< p < \infty \).
Proof
We follow the idea of [48, Lemma 4.8]. Pick an arbitrary kform \(\omega \in C_\mathrm{c}^\infty (\Lambda ^kTM,m)\). Then \(\omega \in {\mathsf D}_2(L_k)\) (by definition of \(L_k\) on \(L^2(\Lambda ^kTM,m)\)) and also \(\omega \in L^p(\Lambda ^kTM,m)\). Since \(L^p(\Lambda ^kTM,m)\) is a reflexive Banach space, a standard result in semigroup theory states that in order to show that \(\omega \in {\mathsf D}_p(L_k)\) it suffices to show that
(see, e.g. [14]). Note that\(\frac{1}{t}(P_t^k\omega  \omega ) = \,\frac{1}{t}\int _0^t P_s^kL_k\omega \,\mathrm {d}s\) in \(L^2(\Lambda ^kTM,m)\). However, since \(L_k\omega \in C_\mathrm{c}^\infty (\Lambda ^kTM)\) (as both \(\,\mathrm {d}\) and \(\delta \) map \(C_\mathrm{c}^\infty (\Lambda TM)\) to \(C_\mathrm{c}^\infty (\Lambda TM)\)), we can interpret the integral on the righthand side as a Bochner integral in the Banach space \(L^p(\Lambda ^kTM,m)\) (see [35, Chapter 1]). Consequently, we may estimate
But then \(\limsup _{t\downarrow 0} \frac{1}{t}\Vert P_t^k\omega  \omega \Vert _p \le \Vert L_k\omega \Vert _p < \infty \). This proves the claim. \(\square \)
By the Stein interpolation theorem [53, Theorem 1 on p.67], for \(p\in (1,\infty )\) and \(k=0,1,\ldots ,n\) the mapping \(t \mapsto P_t^k\) extends analytically to a strongly continuous \(\mathscr {L}(L^p(\Lambda ^kTM,m))\)valued mapping \(z \mapsto P_z^k\) defined on the sector \(\Sigma _{\omega _p}\) with \(\omega _p = \frac{\pi }{2}(1  2/p  1)\). On this sector, the operators \(P_z^k\) are contractive. This implies that \(L_k\) is sectorial of angle \(\omega _p\).
As explained in [56, p. 625], it follows from the general theory of Dirichlet forms [25] that there exists a Markov process \((X_t)_{t\ge 0}\) such that
for all \(f \in C_\mathrm{c}^\infty (M)\). Here, \(\mathbb {E}^x\) denotes expectation under the law of the process \((X_t)_{t\ge 0}\) starting almost surely in \(x \in M\). Using this together with Hypothesis 3.5 (this corresponds to the assumption made in [56, Eq. (1.2)], see the explanation preceding the proof of theorem 3.12), it is then shown in [56, Proposition 2.3] that there exists a Markov process \((V_t)_{t\ge 0}\) such that
for all \(\omega \in C_\mathrm{c}^\infty (\Lambda ^kTM)\). Here, \(\mathbb {E}^v\) denotes expectation under the law of the process \((V_t)_{t\ge 0}\) starting almost surely in \(v\in M\).
As a consequence of (3.6), the operators \(P_t^0\) are positive, in the sense that they send nonnegative functions to nonnegative functions. This, together with the following lemma, allows us to show that \(L_k\) is in fact Rsectorial of angle \(< \frac{1}{2}\pi \).
Lemma 3.9
(Rsectoriality via pointwise domination) Let M be a Riemannian manifold of dimension n equipped with a measure m. Let \(k \in \{0,1\ldots ,n\}\) and suppose A and B are sectorial operators of angle \(<\frac{1}{2}\pi \) on the space \(L^p(M,m)\) and \(L^p(\Lambda ^kTM,m)\), respectively, with \(1\le p<\infty \). Suppose the bounded analytic \(C_0\)semigroups \((S_t)_{t\ge 0}\) and \((T_t)_{t\ge 0}\) generated by \(A\) and \(B\) satisfy the pointwise bound
for all \(\omega \in L^p(\Lambda ^kTM,m)\) and \(t\ge 0,\) where C is a constant. If the set \(\{(I+sA)^{1}:\, s>0\}\) is Rbounded (in particular, if A is Rsectorial), then B is Rsectorial of angle \(<\frac{1}{2}\pi \).
For the proof of this lemma, we need the following result.
Lemma 3.10
Let (M, g) be a Riemannian manifold of dimension n equipped with a measure m. For all \(\omega _1,\ldots ,\omega _N \in L^p(\Lambda ^kTM,m)\), we have
where \((r_i)_i\) is a Rademacher sequence; the implicit constant only depends on p.
Proof
Step 1—First we assume that \(\omega _1,\ldots ,\omega _N\) are supported in a single coordinate chart (U, x). With slight abuse of notation, we will identify each \(\omega _i_U \) with the corresponding \(\mathbb {C}^{d_k}\)valued function on U; here, \(d_k = \left( {\begin{array}{c}n\\ k\end{array}}\right) \) is the dimension of \(\Lambda ^k TU\).
Denote by \(G_k^{1}\) the symmetric, positive definite \(d_k\times d_k\)matrix with elements
where \(1 \le i_1< \cdots < i_k \le n\) and \(1 \le j_1< \cdots < j_k \le n\).
Since \(G_k^{1}\) is orthogonally diagonalisable, we have \(G_k^{1}(p) = Q(p)D(p)Q(p)^T\), where D(p) is diagonal with positive diagonal entries. Now set
for \(p \in U\). By using the KahaneKhintchine inequality,
Next, by the square function characterisation of Rademacher sums for \(\mathbb {C}^{d_k}\)valued functions,
Step 2—We now turn to the general case. Let \((\phi _U)_{U\in \mathscr {U}}\) be a partition of unity subordinate to a collection of coordinate charts \(\mathscr {U}\) covering M. Then, using Fubini’s theorem and the result of Step 1,
\(\square \)
Proof of Lemma 3.9
Upon taking Laplace transforms, the pointwise assumption implies, for \(\lambda \in \mathbb {C}\) with \(\mathrm{Re}\lambda >0\),
Hence if \({{\mathrm{Re}}}\lambda _1,\ldots {{\mathrm{Re}}}\lambda _N >0\), then for all \(\omega _1,\ldots ,\omega _N\in L^p(\Lambda ^kTM,m)\) we find, by Lemma 3.10,
Here, R denotes the Rbound of the set \(\{(I+sA)^{1}:\,s>0\}\). This gives the Rboundedness of the set \(\{(I+\lambda B)^{1}:\, {{\mathrm{Re}}}\lambda >0\}\). A standard Taylor expansion argument allows us to extend this to the Rboundedness of the set \(\{(I+\lambda B)^{1}:\, \lambda \in \Sigma _\nu \}\) for some \(\nu >\frac{1}{2}\pi \). \(\square \)
We now return to the setting considered at the beginning of this section. Combining the preceding lemmas, we arrive at the following result.
Proposition 3.11
(Rsectoriality of \(L_k)\) Let Hypothesis 3.5 be satisfied. For all \(1< p < \infty \) and \(k=0,1,\ldots ,n\), the operator \(L_k\) is Rsectorial on \(L^p(\Lambda ^kTM,m)\) with angle \(\omega _R^+(L_k) < \frac{1}{2}\pi \).
Proof
Fix \(1< p < \infty \). As we have already noted, \(L_k\) generates a strongly continuous analytic contraction semigroup on \(L^p(\Lambda ^kTM)\). By [9, 56], these semigroups satisfy the pointwise bound
for all \(\omega \in L^p(\Lambda ^kTM,m)\). Since the semigroup generated by \(L_0\) is positive, \(L_0\) is Rsectorial by [38, Corollary 5.2]. Lemma 3.9 then implies that \(L_k\) is Rsectorial, of angle \(<\frac{1}{2}\pi \). \(\square \)
We are now ready to state our first main result.
Theorem 3.12
[Bounded \(H^\infty \)calculus for \(L_k]\) Let Hypothesis 3.5 be satisfied. For all \(1< p < \infty \) and all \(k= 0,1,\ldots ,n\), the operator \(L_k\) has a bounded \(H^\infty \)calculus on \(L^p(\Lambda ^kTM,m)\) of angle \(<\frac{1}{2}\pi \).
For \(k=0\) the proposition is an immediate consequence of [38, Corollary 5.2]; see [16] for a more detailed quantitative statement. For \(k=1,\dots ,n\) this argument cannot be used and instead we shall apply the square function estimates of [56]. To make the link between the definitions used in that paper and the ones used here, we need to make some preliminary remarks.
In [56], the Hodge Laplacian on kforms is defined as
This is motivated by the fact that on functions this operator agrees with \(\Delta _k\) (see [27]). Similarly in [56] one defines
Actually, the definition in [56] there differs notationally from (3.8) in that \(e^{\rho }\) is written for the strictly positive function that we denote by \(\rho \).
Define
as a linear operator on \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) (cf. [56, eq. (1.2)], recalling our convention of considering the negative Laplacian). We will show in a moment that
so that Hypothesis 3.5 can be rephrased as assuming that \(\omega \cdot V_k\omega \ge 0\). This corresponds to the assumption made in [56, Eq. (1.4)]. Thus, the results from [56] may be applied in the present situation.
Turning to the proof of (3.9), first observe that \(\widetilde{\Delta }_k\) satisfies
from which it follows that
This can be simplified to
Indeed, in a coordinate chart one has
Noting that \(L_0 = \widetilde{L}_0\), combining (3.3) and (3.10) gives \(\omega \cdot V_k\omega = Q_k(\omega ,\omega )\) as desired.
Proof of Theorem 3.12
Fix \(1< p < \infty \). By Proposition 3.11, \(L_k\) is Rsectorial on \(L^p(\Lambda ^kTM,m)\) and \(\omega _R^+(L_k)<\frac{1}{2}\pi \). Pick \(\vartheta \in (\omega _R^+(L_k),\frac{1}{2}\pi )\). The function \(\psi (z) := \frac{1}{\sqrt{2}}\sqrt{z}e^{\sqrt{z}}\) belongs to \(H^1(\Sigma _\vartheta ^+)\cap H^\infty (\Sigma _\vartheta ^+)\). Using the substitution \(t = s^2\), we see that
Accordingly, by [56, Theorem 5.3],
for all \(\omega \in C_\mathrm{c}^\infty (\Lambda ^kTM)\), where \(E_0^k\) denotes projection onto the kernel of \(L_k\). By a routine density argument (using that convergence in the mixed \(L^p(L^2)\)norm implies almost everywhere convergence along a suitable subsequence), these inequalities extend to arbitrary kforms \(\omega \in L^p(\Lambda ^kTM,m)\).
Now it is well known that for an Rsectorial operator, the square function estimate (3.11) implies the operator having a bounded \(H^\infty \)calculus of angle at most equal to its angle of Rsectoriality (see [39] or [36, Chapter 10]). \(\square \)
The Hodge–Dirac Operator
Throughout this section, we shall assume that Hypothesis 3.5 is in force. Under this assumption one may check, using the BochnerLichnérowiczWeitzenböck formula (3.3) instead of (3.1), that the results in [9, Sect. 5] proved for the special case \(\rho \equiv 1\) carry over to general strictly positive functions \(\rho \in C^\infty (M)\). Whenever we refer to results from [9], we bear this in mind.
Definition 4.1
The Hodge–Dirac operator associated with \(\rho \) is the linear operator D on \(C_\mathrm{c}^\infty (\Lambda TM)\) defined by
As in Remark 3.1 it would be more accurate to denote this operator by \(D_\rho \), but again we prefer to keep the notation simple.
With respect to the decomposition \(C_\mathrm{c}^\infty (\Lambda TM) = \bigoplus _{k=0}^n C_\mathrm{c}^\infty (\Lambda ^kTM)\), D can be represented by the \((n+1)\times (n+1)\)matrix
From \(\,\mathrm {d}^2 = \delta ^2 = 0\), it follows that
Lemma 4.2
For all \(1\le p<\infty \), the operator D is closable as a densely defined operator on \(L^p(\Lambda TM,m)\).
Proof
For the reader’s convenience, we include the easy proof. Let \((\omega _n)_n\) be a sequence in \(C_\mathrm{c}^\infty (\Lambda TM)\) and suppose that \(\omega _n \rightarrow 0\) and \(D\omega _n \rightarrow \eta \) in \(L^p(\Lambda TM, m)\). Decomposing along the direct sum, we find that \(\omega _n^k \rightarrow \omega ^k\) in \(L^p(\Lambda ^kTM,m)\) for \(0\le k \le n\) and \(\,\mathrm {d}_{k1}\omega _n^{k1} + \delta _k\omega _n^{k+1} \rightarrow \eta ^k\) in \(L^p(\Lambda ^kTM,m)\) for \(1 \le k \le n1\); for \(k=0\) we have \(\delta _0\omega _n^1 \rightarrow \eta ^0\) in \(L^p(\Lambda ^0TM,m)\) and for \(k = n\) we have \(\,\mathrm {d}_{n1}\omega _n^{n1} \rightarrow \eta ^n\) in \(L^p(\Lambda ^nTM,m)\).
First consider \(1 \le k \le n1\), and pick \(\phi \in C_\mathrm{c}^\infty (\Lambda ^kTM,m)\). By Hölder’s inequality,
This is justified since both \(\omega _n^{k+1}\) and \(\phi \) are compactly supported and therefore belong to \(\mathsf {D}_q(\delta _k)\), respectively, \(\mathsf {D}_q(\delta _{k1})\), with \(\frac{1}{p}+\frac{1}{q}=1\). It follows that \(\eta ^k = 0\) by density. The cases \(k = 0\) and \(k=n\) are treated similarly. We conclude that \(\eta ^k = 0\) for all k, so \(\eta = 0\). \(\square \)
With slight abuse of notation, we will denote the closure again by D and write \({\mathsf D}_p(D)\) for its domain in \(L^p(\Lambda TM, m)\). The main result of this section asserts that, under Hypothesis 3.5, for all \(1< p < \infty \) the operator D is Rbisectorial on \(L^p(\Lambda TM, m)\) and has a bounded \(H^\infty \)calculus on this space.
Since \(L_k\) is sectorial on \(L^p(\Lambda ^kTM,m)\), \(1<p<\infty \), its square root is well defined and sectorial. Moreover, we have \( C_\mathrm{c}^\infty (\Lambda ^kTM) \subseteq {\mathsf D}_p(L_k)\subseteq {\mathsf D}_p(L_k^{1/2})\) (cf. Lemma 3.8).
Lemma 4.3
For all \(1< p < \infty \) and \(k=0,1,\ldots ,n\), \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) is dense in \({\mathsf D}_p(L_k^{1/2})\).
Proof
Pick an arbitrary \(\omega \in {\mathsf D}_p(L_k^{1/2})\). By [2, Proposition 3.8.2], we have \(\omega \in {\mathsf D}_p((IL_k)^{1/2})\). From the proof of [9, Corollaries 4.3 and 5.3], we see that there exists a sequence \((\omega _n)_n\) in \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) such that \((I +L_k)^{1/2}\omega _n \rightarrow (I +L_k)^{1/2}\omega \) in \(L^p(\Lambda ^kTM,m)\). By [9, Lemmas 4.2 and 5.2], we then find that
By the choice of the sequence \(\omega _n\), the latter tends to 0 and consequently we have \(\omega _n\rightarrow \omega \) in \({\mathsf D}_p(L_k^{1/2})\). \(\square \)
The following result is essentially a restatement of [9, Theorem 5.1, Corollary 5.3] in the presence of nonnegative curvature. The results in [9] are stated only for the case \(\rho \equiv 1\) and given in the form of inequalities for smooth compactly supported kforms.
Theorem 4.4
(Boundedness of the Riesz transform associated with \(L_k\)) Let Hypothesis 3.5 hold. For all \(1< p < \infty \) and \(k= 0,1,\ldots ,n\), we have
and for all \(\omega \) in this common domain we have
Here, \(D_k := \mathrm {d}_k + \delta _{k1}\) is the restriction of D as a densely defined operator acting from \(L^p(\Lambda ^kTM,m)\) into \(L^p(\Lambda TM,m)\).
Proof
We start by showing that \({\mathsf D}_p(L_k^{1/2}) \subseteq {\mathsf D}_p(\mathrm {d}_k + \delta _{k1})\) together with the estimate
Pick an arbitrary \(\omega \in {\mathsf D}_p(L_k^{1/2})\). As \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) is dense in \({\mathsf D}_p(L_k^{1/2})\) by Lemma 4.3, we can find a sequence \((\omega _i)_i\) of kforms in this space converging to \(\omega \) in \({\mathsf D}_p(L_k^{1/2})\). By [9, Theorem 5.1] we then find, for all i, j,
which shows that \((\omega _i)_i\) is Cauchy in \({\mathsf D}_p(\mathrm {d}_k + \delta _{k1})\). By the closedness of \(\,\mathrm {d}_k + \delta _{k1}\), this sequence converges to some \(\eta \in {\mathsf D}_p(\mathrm {d}_k + \delta _{k1})\). Since both \({\mathsf D}_p(L_k^{1/2})\) and \({\mathsf D}_p(\mathrm {d}_k + \delta _{k1})\) are continuously embedded into \(L^p(\Lambda ^kTM,m)\), we have \(\omega _i \rightarrow \omega \) and \(\omega _i \rightarrow \eta \) in \(L^p(\Lambda ^kTM,m)\), and therefore \(\eta = \omega \). This shows that \(\omega \in {\mathsf D}_p(\mathrm {d}_k + \delta _{k1})\). To prove the estimate, by [9, Theorem 5.1] we obtain, for all i,
Since \(\omega _i \rightarrow \omega \) both in \({\mathsf D}_p(L_k^{1/2})\) and \({\mathsf D}_p(\mathrm {d}_k + \delta _{k1})\), it follows that
The reverse inclusion and estimate may be proved in a similar manner. Now one uses that \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) is dense in \({\mathsf D}_p(\mathrm {d}_k + \delta _{k1})\), \(\mathrm {d}_k + \delta _{k1}\) being the closure of its restriction to \(C_\mathrm{c}^\infty (\Lambda ^kTM)\). One furthermore uses the estimate in [9, Corollary 5.3] which holds (with \(e = 0\) in the notation of [9]) by Hypothesis 3.5. Finally, by definition of the norm on \(L^p(\Lambda TM,m)\), for all \(\omega \in C_\mathrm{c}^\infty (\Lambda ^kTM)\), we have
noting that \(\,\mathrm {d}_k \omega \in C_\mathrm{c}^\infty (\Lambda ^{k+1}TM)\) and \(\delta _{k1}\omega \in C_\mathrm{c}^\infty (\Lambda ^{k1}TM)\). \(\square \)
Our proof of the Rbisectoriality of D will be based on Rgradient bounds to which we turn next. We begin with a lemma.
Lemma 4.5
For all \(1< p < \infty \) and \(k=0,1,\ldots ,n\), we have \({\mathsf D}_p(L_k^{1/2})\subseteq {\mathsf D}_p(\mathrm {d}_k)\cap {\mathsf D}_p(\delta _{k1})\).
Proof
Pick \(\omega \in {\mathsf D}_p(L_k^{1/2})\) arbitrarily. As \(C_\mathrm{c}^\infty (\Lambda ^kTM)\) is dense in \({\mathsf D}_p(L_k^{1/2})\) by Lemma 4.3, we can find a sequence \((\omega _i)_i\) of kforms in this space converging to \(\omega \) in \({\mathsf D}_p(L_k^{1/2})\). By [9, Theorem 5.1] we then find, for all i, j,
which shows that \((\omega _i)_i\) is Cauchy in \({\mathsf D}_p(\mathrm {d}_k)\). By the closedness of \(\,\mathrm {d}_k\), we then find that this sequence converges to some \(\eta \in {\mathsf D}_p(\mathrm {d}_k)\). As in the proof of Theorem 4.4, we show that \(\omega = \eta \). It follows that \(\omega \in {\mathsf D}_p(\mathrm {d}_k)\).
This proves the inclusion \({\mathsf D}_p(L_k^{1/2}) \subseteq {\mathsf D}_p(\mathrm {d}_k)\). The inclusion \({\mathsf D}_p(L_k^{1/2}) \subseteq {\mathsf D}_p(\delta _k)\) is proved in the same way. \(\square \)
Thanks to the lemma, the operators
and
are well defined, and by Theorem 4.4 combined with the equivalence of norms (4.1) they are in fact \(L^p\)bounded.
It also follows from the lemma that the operators \(\,\mathrm {d}_k(I + t^2L_k)^{1}\) and \(\delta _{k1}(I + t^2L_k)^{1}\) are well defined and \(L^p\)bounded for all \(t \in \mathbb {R}\); indeed, just note that \({\mathsf D}_p(L_k) \subseteq {\mathsf D}_p(L_k^{1/2})\subseteq {\mathsf D}_p(\mathrm {d}_k) \cap {\mathsf D}_p(\delta _{k1})\). The next proposition asserts that these operators form an Rbounded family:
Proposition 4.6
(Rgradient bounds) Let Hypothesis 3.5 hold. For all \(1< p < \infty \) and \(k =0,1,\ldots ,n\) the families of operators
and
are both Rbounded.
Proof
We will only prove that the first set is Rbounded. The Rboundedness of the other set is proved in exactly the same way.
For \(t > 0\), standard functional calculus arguments show that
where \(\psi (z) = \frac{\sqrt{z}}{1 + z}\). Observe that \(\psi \in H^1(\Sigma _\vartheta ^+)\cap H^\infty (\Sigma _\vartheta ^+)\) for any \(\vartheta \in (0,\frac{1}{2}\pi )\). By a result of [39] (see also [40, Chapter 12]) the set
is Rbounded in \(\mathscr {L}(L^p(\Lambda ^kTM,m))\). Since \(\,\mathrm {d}_kL_k^{1/2}\) is bounded, it follows that the set
is Rbounded in \(\mathscr {L}(L^p(\Lambda ^kTM,m),L^p(\Lambda ^{k+1}TM,m))\). This concludes the proof.
\(\square \)
In order to prove the Rbisectoriality of the Hodge–Dirac operator, we need one more lemma, which concerns commutativity rules used in the computation of the resolvents of the Hodge–Dirac operator.
Lemma 4.7
For all \(1 \le p < \infty \), \(k=0,1,\ldots ,n\), and \(t>0\), the following identities hold on \({\mathsf D}_p(\mathrm {d}_k)\) and \({\mathsf D}_p(\delta _k)\), respectively:
and
Similar identities hold with \((I + t^2L_{k+1})^{1}\) replaced by \((I + t^2L_{k+1})^{1/2}\) or \(P_t^{k+1}\).
Proof
We will only prove the first identity; the second is proved in a similar manner. The corresponding results for \(P_t^{k+1}\) can be proved along the same lines, or deduced from the results for the resolvent using Laplace inversion, and in turn the identities involving \((I + t^2L_{k+1})^{1/2}\) follow from this.
For kforms \(\omega \in C_\mathrm{c}^\infty (\Lambda ^kTM,m)\), we have \(P_t^{k+1}\mathrm {d}_k\omega = \mathrm {d}_kP_t^k\omega \) (see [9]). Here, the righthand side is well defined as \(P_t^k\omega \in {\mathsf D}_p(L_k) \subseteq {\mathsf D}_p(\mathrm {d}_k)\) (which holds by analyticity of \(P_t^k\)). Now pick \(\omega \in {\mathsf D}_p(\mathrm {d}_k)\) and let \(\omega _n \in C_\mathrm{c}^\infty (\Lambda ^kTM)\) be a sequence converging to \(\omega \in {\mathsf D}_p(\mathrm {d}_k)\). Such a sequence exists by the definition of \(\,\mathrm {d}_k\) as a closed operator. Thus \(\omega _n \rightarrow \omega \) and \(\mathrm {d}_k\omega _n \rightarrow \mathrm {d}_k\omega \) in \(L^p(\Lambda ^kTM,m)\) respectively \(L^p(\Lambda ^{k+1}TM,m)\). The boundedness of \(P_t^k\) and \(P_t^{k+1}\) then implies that \(P_t^k\omega _n \rightarrow P_t^k\omega \) and \(P_t^{k+1}\mathrm {d}_k\omega _n \rightarrow P_t^{k+1}\mathrm {d}_k\omega \) in \(L^p(\Lambda ^kTM,m)\) respectively \(L^p(\Lambda ^{k+1}TM,m)\). As \(P_t^{k+1}\mathrm {d}_k\omega _n = \mathrm {d}_kP_t^k\omega _n\) for every n, and as the lefthand side converges, we obtain that \(\,\mathrm {d}_kP_t^k\omega _n\) converges in \(L^p(\Lambda ^{k+1}TM,m)\). The closedness of \(\mathrm {d}_k\) shows that \(P_t^k\omega \in {\mathsf D}_p(\mathrm {d}_k)\) and that \(P_t^{k+1}\mathrm {d}_k\omega = \mathrm {d}_kP_t^k\omega \).
Taking Laplace transforms on both sides, we obtain
from which one deduces the desired identity. \(\square \)
Remark 4.8
Although we will not need it, we point out the following consequence of the preceding results: for all \(k=0,1,\ldots ,n\) we have
with equivalent norms.
To prove this, we note that Lemma 4.5, combined with the domain equality of Theorem 4.4, gives the inclusion \({\mathsf D}_p(D_k)\subseteq {\mathsf D}_p(\mathrm {d}_k)\cap {\mathsf D}_p(\delta _{k1})\). To prove the reverse inclusion we argue as follows: For \(\omega \in C_\mathrm{c}^\infty (\Lambda ^kTM)\) we observed in (4.1) that
By Theorem 4.4 and the estimate (4.2) used in the proof of Lemma 4.5 and its analogue for \(\delta _{k1}\), this equivalence of norms extends to arbitrary \(\omega \in {\mathsf D}_p(L_k^{1/2})\).
Now let \(\omega \in {\mathsf D}_p(\mathrm {d}_k)\cap {\mathsf D}_p(\delta _{k1})\) be arbitrary. For \(t>0\) we have \(P_t^k \omega \in {\mathsf D}_p(L_k) \subseteq {\mathsf D}_p(L_k^{1/2})\), so that
By Lemma 4.7 we have \(\Vert \mathrm {d}_k P_t^k\omega \Vert _p = \Vert P_t^{k+1}\mathrm {d}_k\omega \Vert _p \rightarrow \Vert \mathrm {d}_k \omega \Vert _p\) as \(t \downarrow 0\), and similarly \(\Vert \delta _{k1} P_t^k\omega \Vert _p\rightarrow \Vert \delta _{k1} \omega \Vert _p\). As a consequence, \(P_t^k\omega \rightarrow \omega \) in \({\mathsf D}_p(\mathrm {d}_k)\cap {\mathsf D}_p(\delta _{k1})\). By (4.4) and the closedness of \(D_k\), we then also have \(\omega \in \mathsf {D}_p(D_k)\) and \(P_t^k\omega \rightarrow \omega \) in \(\mathsf {D}_p(D_k)\). We conclude that \({\mathsf D}_p(\mathrm {d}_k)\cap {\mathsf D}_p(\delta _{k1})\subseteq {\mathsf D}_p(D_k)\) and that (4.3) holds for all \(\omega \in {\mathsf D}_p(\mathrm {d}_k)\cap {\mathsf D}_p(\delta _{k1})\).
We now obtain the following result.
Theorem 4.9
(Rbisectoriality of D) Let Hypothesis 3.5 hold. For all \(1< p < \infty \) the Hodge–Dirac operator D is Rbisectorial on \(L^p(\Lambda TM, m)\).
Proof
We will start by showing that the set \(\{it:\, t\in \mathbb {R},\,t \ne 0\}\) is contained in the resolvent set of D. We will do this by showing that \(I  itD\) has a twosided bounded inverse given by
with zeroes in the remaining entries away from the three main diagonals. By the Rsectoriality of \(L_k\) (Proposition 3.11) and the Rgradient bounds (Proposition 4.6) all entries are bounded. It only remains to check that this matrix defines a twosided inverse of \(IitD\). Let us first multiply with \(I  itD\) from the left. It suffices to compute the three diagonals, as the other elements of the product clearly vanish. It is easy to see that the kth diagonal element becomes
using that \(L_{k1} = \,(\,\mathrm {d}_{k2}\delta _{k2} + \delta _{k1}\mathrm {d}_{k1})\); obvious adjustments need to be made for \(k = 1\) and \(k=n\). For the two other diagonals, it is easy to see that one gets two terms which cancel.
To make this argument rigorous, note that both \(\mathrm {d}_{k2}\delta _{k2}(I + t^2L_{k1})^{1}\) and \(\delta _{k1}\mathrm {d}_{k1}(I + t^2L_{k1})^{1} \) are well defined as bounded operators, so that it suffices to check the computations for \(\omega \in C_\mathrm{c}^\infty (\Lambda TM)\). The asserted welldefinedness and boundedness of the first of these operators can be seen by noting that
using Lemma 4.7; the boundedness of the other operator follows similarly.
If we multiply with \(I  itD\) from the right and use Lemma 4.7, we easily see that the product is again the identity.
It remains to show that the set \(\{it(it  D)^{1}: t \ne 0\} = \{(it  D)^{1}: t\ne 0\}\) is Rbounded. For this, observe that the diagonal entries are Rbounded by the Rsectoriality of \(L_k\). The Rboundedness of the other entries follows from the Rgradient bounds (Proposition 4.6). Since a set of operator matrices is Rbounded precisely when each entry is Rbounded, we conclude that D is Rbisectorial. \(\square \)
Proposition 4.10
Let \(1< p < \infty \). Then \(D^2 = L\) as densely defined closed operators on \(L^p(\Lambda TM, m)\).
This result may seem obvious by formal computation, but the issue is to rigorously justify the matrix multiplication involving products of unbounded operators.
Proof
It suffices to show that \(\mathsf {D}_p(L) \subset \mathsf {D}_p(D^2)\) and \(D^2(I+t^2L)^{1} = L(I+t^2L)^{1}\), or equivalently, \( (\mathrm {d}_{k1}\delta _{k1} + \delta _k\,\mathrm {d}_k)(I+t^2L_k)^{1} = L_k(I+t^2L_k)^{1}\) for all \(k=0,1,\ldots ,n\). The rigorous justification of the equivalent identity (4.5) has already been given in the course of the above proof.
If \(\omega \in \mathsf {D}_p(D^2)\), then by Lemma 4.7 we find
Here we used that \((I + t^2L)^{1}\) converges to I strongly as \(t\rightarrow 0\) by the general theory of sectorial operators. But then we find that
As \((I + t^2L)^{1}\omega \rightarrow \omega \) as \(t\rightarrow 0\), the closedness of L gives \(\omega \in \mathsf {D}(L)\) and \(L\omega = D^2\omega \). \(\square \)
We are now ready to prove that D has a bounded \(H^\infty \)calculus on \(L^p(\Lambda TM, m)\).
Theorem 4.11
(Bounded \(H^\infty \)functional calculus for D) Let Hypothesis 3.5 hold. For all \(1< p < \infty \) the Hodge–Dirac operator D on \(L^p(\Lambda TM, m)\) has a bounded \(H^\infty \)calculus on a bisector.
Proof
With all the preparations done, this now follows by combining Proposition 2.3 with Theorems 3.12 and 4.9 and Proposition 4.10. \(\square \)
References
 1.
Albrecht, D., Duong, X., McIntosh, A.: Operator theory and harmonic analysis. In: “Instructional Workshop on Analysis and Geometry, Part III” (Canberra, 1995), Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 34, pp. 77–136 (1996)
 2.
Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: VectorValued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, vol. 96, 2nd edn. Springer, Berlin (2011)
 3.
Auscher, P., Coulhon, T.: Riesz transform on manifolds and Poincaré inequalities. Ann. Sc. Norm. Sup. Pisa, Classe di Scienze 4(3), 531–555 (2005)
 4.
Auscher, P., Coulhon, T., Duong, X., Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. Ecole Norm. Sup. 37(6), 911–957 (2004)
 5.
Auscher, P., McIntosh, A., Nahmod, A.: Holomorphic functional calculi of operators, quadratic estimates and interpolation. Indiana Univ. Math. J. 46(2), 375–404 (1997)
 6.
Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18, 192–248 (2008)
 7.
Auscher, P., Stahlhut, S.: Remarks on functional calculus for perturbed firstorder Dirac operators. In: “Operator Theory in Harmonic and Noncommutative Analysis”, Operator Theory: Advances and Applications, vol. 240, pp. 31–43 (2014)
 8.
Axelsson, A., Keith, S., McIntosh, A.: Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math. 163(3), 455–497 (2006)
 9.
Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Sém. Prob. XXI. Springer Lect. Notes in Math, vol. 1247, pp. 137–172 (1987)
 10.
Bañuelos, R., Osekowski, A.: Sharp martingale inequalities and applications to Riesz transforms on manifolds, Lie groups and Gauss space. J. Funct. Anal. 269(6), 1652–1713 (2015)
 11.
Baudoin, F., Garofalo, N.: A note on the boundedness of Riesz transform for some subelliptic operators. Int. Math. Res. Not. 2, 398–421 (2013)
 12.
Bishop, R., Crittenden, R.: Geometry of Manifolds. Academic Press, New York (1964)
 13.
Bismut, J.M.: The Witten complex and the degenerate Morse inequalities. J. Differ. Geom. 23, 207–240 (1986)
 14.
Butzer, P.L., Berens, H.: Semigroups of Operators and Approximation. Grundlehren der Mathematischen Wissenschaften, vol. 145. Springer, Berlin (1967)
 15.
Carbonaro, A., Dragi\(\check{\text{c}}\)ević, O.: Bellman function and linear dimensionfree estimates in a theorem of Bakry. J. Funct. Anal. 265(7), 1085–1104 (2013)
 16.
Carbonaro, A., Dragi\(\check{\text{ c }}\)ević, O.: Functional calculus for generators of symmetric contraction semigroups. Duke Math. J. 166(5), 937–974 (2017). https://doi.org/10.1215/001270943774526
 17.
Chen, P., Magniez, J., Ouhabaz, E.M.: The Hodgede Rham Laplacian and \(L^p\)boundedness of Riesz transforms on noncompact manifolds. Nonlinear Anal. Theory Meth. Appl. 125, 78–98 (2015)
 18.
Clément, Ph, de Pagter, B., Sukochev, F., Witvliet, H.: Schauder decompositions and multiplier theorems. Studia Math. 138(2), 135–163 (2000)
 19.
Coulhon, Th, Duong, X.T.: Riesz transforms for \(1\le p\le 2\). Trans. Am. Math. Soc. 351, 1151–1169 (1999)
 20.
Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded \(H^\infty \) functional calculus. J. Aust. Math. Soc. Ser. A 60(1), 51–89 (1996)
 21.
Denk, R., Hieber, M., Prüss, J.: \(R\)boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc., vol. 166. American Mathematical Society, New York (2003)
 22.
Duelli, M.M.: Functional calculus for bisectorial operators and applications to linear and nonlinear evolution equations. Ph.D, thesis, University of Karlsruhe (2005)
 23.
Elworthy, K.D., Rosenberg, S.: The Witten Laplacian on negatively curved simply connected manifolds. Tokyo J. Math. 16(2), 513–524 (1993)
 24.
Frey, D., McIntosh, A., Portal, P.: Conical square function estimates and functional calculi for perturbed Hodge–Dirac operators in \(L^p\). J. Anal. Math. arXiv:1407.4774
 25.
Fukushima, M.: Dirichlet Forms and Markov Processes. North Holland, New York (1980)
 26.
Futaki, A., Li, H., Li, X.D.: On the first eigenvalue of the Witten Laplacian and the diameter of compact shrinking solitons. Ann. Global Anal. Geometry 44(2), 105–114 (2013)
 27.
Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Boston (2009)
 28.
Haase, M.H.A.: The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006)
 29.
Helffer, B., Nier, F.: Hypoelliptic estimates and spectral theory for FokkerPlanck operators and Witten Laplacians: Springer Lect Notes in Math, vol. 1862. Springer, New York (2005)
 30.
Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semiclassique: IV: Étude du complexe de Witten. Commun. Partial Diff. Eqs. 10(3), 245–340 (1985)
 31.
Hofmann, S., Mitrea, M., Monniaux, S.: \(L^p\)bounds for the Riesz transforms associated with the Hodge Laplacian in Lipschitz subdomains of Riemannian manifolds. Ann. Inst. Fourier. 61(4), 1323–1349 (2011)
 32.
Hytönen, T.P., McIntosh, A.: Stability in \(p\) of the \(H^\infty \)calculus of firstorder systems in \( L^p\). In: “The AMSIANU Workshop on Spectral Theory and Harmonic Analysis”, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 44, pp. 167–181 (2010)
 33.
Hytönen, T.P., McIntosh, A., Portal, P.: Kato’s square root problem in Banach spaces. J. Funct. Anal. 254(3), 675–726 (2008)
 34.
Hytönen, T.P., McIntosh, A., Portal, P.: Holomorphic functional calculus of HodgeDirac operators in \(L^p\). J. Evol. Equ. 11(1), 71–105 (2011)
 35.
Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: “Analysis in Banach Spaces, vol. I: Martingales and LittlewoodPaley Theory”, Ergebnisse der Mathematik, 3e Folge, vol. 63. Springer, New York (2016)
 36.
Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: “Analysis in Banach Spaces, vol. II: probabilistic methods and operator theory”, Ergebnisse der Mathematik, 3e Folge, vol. 67. Springer, New York (2017)
 37.
Jiayu, J.: Gradient estimate for the heat kernel of a complete Riemannian manifold and its applications. J. Funct. Anal. 97(2), 293–310 (1991)
 38.
Kalton, N.J., Weis, L.W.: The \(H^\infty \)calculus and sums of closed operators. Math. Ann. 321(2), 319–345 (2001)
 39.
Kalton, N.J., Weis, L.W.: The \(H^{\infty }\)calculus and square function estimates. In: Nigel J. Kalton Selecta, vol. 1, pp. 715–764. Springer, New York (2016)
 40.
Kunstmann, P.C., Weis, L.W.: Maximal \(L_p\)regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)functional calculus. In: Functional Analytic Methods for Evolution Equations. Springer Lect. Notes in Math., vol. 1855, pp. 65–311 (2004)
 41.
Lee, J.M.: Riemannian manifolds: an introduction to curvature. Graduate Texts in Mathematics, vol. 176. Springer, Berlin (2006)
 42.
Li, H.Q.: La transformation de Riesz sur les variétés coniques. J. Funct. Anal. 168(1), 145–238 (1999)
 43.
Li, P., Yau, S.T.: On the parabolic kernel of the Schr ödinger operator. Acta Math. 156, 153–201 (1986)
 44.
Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures App. 84(10), 1295–1361 (2005)
 45.
Li, X.D.: Martingale transforms and \(L^p\)norm estimates of Riesz transforms on complete Riemannian manifolds. Probab. Theory Relat. Fields 141(1–2), 247–281 (2008); Erratum. Probab. Theory Relat. Fields 159(1), 405–408 (2014)
 46.
Li, X.D.: Riesz transforms on forms and \(L^p\)Hodge decomposition on complete Riemannian manifolds. Rev. Mat. Iberoam. 26(2), 481–528 (2010)
 47.
Lohoué, N.: Transformées de Riesz et fonctions de LittlewoodPaley sur les groupes non moyennables. Compt. Rend. Acad. Sci. Paris 306(I), 327–330 (1988)
 48.
van Maas, J., Neerven, J.M.A.M.: Boundedness of the Riesz transforms for elliptic operators on abstract Wiener spaces. J. Funct. Anal. 257, 410–2475 (2009)
 49.
Magniez, J.: Riesz transforms of the Hodgede Rham Laplacian on Riemannian manifolds. Math. Nachr. 289(8–9), 1021–1043 (2016)
 50.
McIntosh, A.: Operators which have an \(H_\infty \) functional calculus. In: “Miniconference on Operator Theory and Partial Differential Equations” (North Ryde, 1986). Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, pp. 210–231 (1986)
 51.
McIntosh, A., Monniaux, S.: Hodge–Dirac, HodgeLaplacian and HodgeStokes operators in \(L^p\) spaces on Lipschitz domains, arXiv:1608.01797
 52.
Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247(3), 643–662 (2004)
 53.
Stein, E.M.: Topics in Harmonic Analysis Related to the LittlewoodPaley Theory. Annals of Mathematical Studies, vol. 63. Princeton University Press, Princeton (1970)
 54.
Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)
 55.
Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)
 56.
Yoshida, N.: Sobolev spaces on a Riemannian manifold and their equivalence. J. Math. Kyoto Univ. 32(3), 621–654 (1992)
Acknowledgements
The authors thank Alex Amenta and Pierre Portal for helpful comments. Jan van Neerven acknowledges financial support from the ARC Discovery Grant DP 160100941. Rik Versendaal is supported by the Peter Paul Peterich Foundation via TU Delft University Fund.
Author information
Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
van Neerven, J., Versendaal, R. \(L^p\)Analysis of the Hodge–Dirac Operator Associated with Witten Laplacians on Complete Riemannian Manifolds. J Geom Anal 28, 3109–3138 (2018). https://doi.org/10.1007/s1222001799474
Received:
Published:
Issue Date:
Keywords
 Witten Laplacian
 Hodge–Dirac operator
 Rbisectoriality
 \(H^\infty \)functional calculus
 Bakry–Emery Ricci curvature
Mathematics Subject Classification
 Primary 47A60
 Secondary 58A10, 58J35, 58J60