Skip to main content
Log in

Spectral Multipliers for the Kohn Laplacian on Forms on the Sphere in \(\mathbb {C}^n\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The unit sphere \(\mathbb {S}\) in \(\mathbb {C}^n\) is equipped with the tangential Cauchy–Riemann complex and the associated Laplacian \(\Box _b\). We prove a Hörmander spectral multiplier theorem for \(\Box _b\) with critical index \(n-1/2\), that is, half the topological dimension of \(\mathbb {S}\). Our proof is mainly based on representation theory and on a detailed analysis of the spaces of differential forms on \(\mathbb {S}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baudoin, F., Wang, J.: The subelliptic heat kernel on the CR sphere. Math. Z. 275, 135–150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Bellaïche, A., Risler, J.-J. (eds.) Sub-riemannian Geometry. Progress in Mathematics, vol. 144, pp. 1–78. Birkhäuser, Basel (1996)

    Chapter  Google Scholar 

  3. Boggess, A.: CR Manifolds and the Tangential Cauchy-Riemann Complex. Studies in Advanced Mathematics. CRC Press, Boca Raton (1991)

    MATH  Google Scholar 

  4. Casarino, V., Peloso, M.M.: \(L^p\)-summability of Riesz means for the sublaplacian on complex spheres. J. Lond. Math. Soc. 83, 137–152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, D.-C., Markina, I., Vasil’ev, A.: Hopf fibration: geodesics and distances. J. Geom. Phys. 61, 986–1000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christ, M.: \(L^p\) bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328, 73–81 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Cowling, M.G., Klima, O., Sikora, A.: Spectral multipliers for the Kohn sublaplacian on the sphere in \(\mathbb{C}^n\). Trans. Am. Math. Soc. 363, 611–631 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowling, M.G., Martini, A.: Sub-Finsler geometry and finite propagation speed. In: Picardello, M.A. (ed.) Trends in Harmonic Analysis. Springer INdAM series, vol. 3, pp. 147–205. Springer, Milan (2013)

    Chapter  Google Scholar 

  9. Cowling, M.G., Sikora, A.: A spectral multiplier theorem for a sublaplacian on \(SU(2)\). Math. Z. 238, 1–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196, 443–485 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fefferman, C., Phong, D.H.: Subelliptic eigenvalue problems. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vol. I, II. Wadsworth Mathematics Series, pp. 590–606. Wadsworth, Belmont (1983)

  12. Folland, G.B.: The tangential Cauchy-Riemann complex on spheres. Trans. Am. Math. Soc. 171, 83–133 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Folland, G.B., Kohn, J.J.: The Neumann Problem for the Cauchy–Riemann Complex. Annals of Mathematics Studies, vol. 75. Princeton University Press, Princeton, NJ (1972)

    MATH  Google Scholar 

  14. Folland, G.B., Stein, E.M.: Estimates for the \(\bar{\partial }_b\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  MATH  Google Scholar 

  15. Geller, D.: The Laplacian and the Kohn Laplacian for the sphere. J. Diff. Geom. 15, 417–435 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Graduate Texts in Math, vol. 255. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  17. Hebisch, W.: Multiplier theorem on generalized Heisenberg groups. Colloq. Math. 65, 231–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hebisch, W.: Functional calculus for slowly decaying kernels. preprint (1995). http://www.math.uni.wroc.pl/~hebisch/

  19. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knapp, A.: Lie Groups Beyond An Introduction. Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  21. Korányi, A., Vági, S.: Singular integrals on homogeneous spaces and some problems of classical analysis. Ann. Scuola Norm. Sup. Pisa (3) 25, 575–648 (1971)

    MathSciNet  MATH  Google Scholar 

  22. Martini, A., Müller, D.: Spectral multiplier theorems of Euclidean type on new classes of \(2\)-step stratified groups. Proc. Lond. Math. Soc. 109(5), 1229–1263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mauceri, G.: Riesz means for the eigenfunction expansions for a class of hypo-elliptic differential operators. Ann. Inst. Fourier (Grenoble) 31(4), 115–140 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mauceri, G., Meda, S.: Vector-valued multipliers on stratified groups. Rev. Mat. Iberoam. 6, 141–154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Müller, D.: On Riesz means of eigenfunction expansions for the Kohn Laplacian. J. Reine Angew. Math. 401, 113–121 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Müller, D., Peloso, M.M., Ricci, F.: \(L^p\)-spectral multipliers for the Hodge Laplacian acting on \(1\)-forms on the Heisenberg group. Geom. Funct. Anal. 17, 852–886 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Müller, D., Peloso, M.M., Ricci, F.: Analysis of the Hodge Laplacian on the Heisenberg Group. Mem. Am. Math. Soc. 233(1095) (2015)

  28. Müller, D., Ricci, F., Stein, E.M.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II. Math. Z. 221, 267–291 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Müller, D., Stein, E.M.: On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. 73, 413–440 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rudin, W.: Function Theory in the Unit Ball of \(\mathbb{C}^n\). Grundlehren der Mathematischen Wissenschaften, vol. 241. Springer, New York (1980)

    Book  MATH  Google Scholar 

  33. Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247, 643–662 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stein, E.M., Weiss, G.: Interpolation of operators with change of measures. Trans. Am. Math. Soc. 87, 159–172 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  36. Street, B.: The \(\Box _b\) heat equation and multipliers via the wave equation. Math. Z. 263, 861–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vilenkin, N.J., Klimyk, A.U.: Representations of Lie Groups and Special Functions, vol. 3. Mathematics and Its Applications (Soviet Series), vol. 75. Kluwer Academic Publishers, Dordrecht (1992)

Download references

Acknowledgements

Valentina Casarino and Alessio Martini were partially supported by GNAMPA (Progetto 2014 “Moltiplicatori e proiettori spettrali associati a Laplaciani su sfere e gruppi nilpotenti”) and MIUR (PRIN 2010-2011 “Varietà reali e complesse: geometria, topologia e analisi armonica”). Michael G. Cowling, Alessio Martini, and Adam Sikora were supported by the Australian Research Council (Project DP110102488). Michael G. Cowling and Alessio Martini acknowledge the generous support of the Humboldt Foundation. Alessio Martini gratefully acknowledges the support of Deutsche Forschungsgemeinschaft (project MA 5222/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Cowling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casarino, V., Cowling, M.G., Martini, A. et al. Spectral Multipliers for the Kohn Laplacian on Forms on the Sphere in \(\mathbb {C}^n\) . J Geom Anal 27, 3302–3338 (2017). https://doi.org/10.1007/s12220-017-9806-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9806-3

Keywords

Mathematics Subject Classification

Navigation