Skip to main content
Log in

Geometric Estimation of a Potential and Cone Conditions of a Body

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We investigate a potential obtained as the convolution of a radially symmetric function and the characteristic function of a body (the closure of a bonded open set) with exterior cones. In order to restrict the location of a maximizer of the potential into a smaller closed region contained in the interior of the body, we give an estimate of the potential using the exterior cones of the body. Moreover, we apply the result to the Poisson integral for the upper half-space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brasco, L., Magnanini, R., Salani, P.: The location of the hot spot in a grounded convex conductor. Indiana Univ. Math. J. 60, 633–660 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brasco, L., Magnanini, R.: The heart of a convex body. In: Magnanini, R., Sakaguchi, S., Alvino, A. (eds.) Geometric properties for parabolic and elliptic PDE’s. Springer INdAM, pp. 49–66. Springer, Milan (2013)

    Chapter  Google Scholar 

  3. Busemann, H., Petty, C.M.: Problems on convex bodies. Math. Scand. 4, 88–94 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chavel, I., Karp, L.: Movement of hot spots in Riemannian manifolds. J. Anal. Math. 55, 271–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Herburt, I., Moszyńska, M., Peradzyński, Z.: Remarks on radial centres of convex bodies. Math. Phys. Anal. Geom. 8, 157–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Herburt, I.: On the uniqueness of gravitational centre. Math. Phys. Anal. Geom. 10, 251–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Herburt, I.: Location of radial centres of convex bodies. Adv. Geom. 8, 309–313 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jimbo, S., Sakaguchi, S.: Movement of hot spots over unbounded domains in \({\mathbb{R}}^N\). J. Math. Anal. Appl. 182, 810–835 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karp, L., Peyerimhoff, N.: Geometric heat comparison criteria for Riemannian manifolds. Ann. Glob. Anal. Geom. 31, 115–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Magnanini, R.: An introduction to the study of critical points of solutions of elliptic and parabolic equations. arXiv:1604.00530

  13. Magnanini, R., Sakaguchi, S.: On heat conductors with a stationary hot spot. Anal. Mat. Pura Appl. (4) 183(1), 1–23 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moszyńska, M.: Looking for selectors of star bodies. Geom. Dedic. 81, 131–147 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moszyńska, M.: Selected topics in convex geometry. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  16. O’Hara, J.: Energy of a knot. Topology 30, 241–247 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. O’Hara, J.: Family of energy functionals of knots. Topol. Appl. 48, 147–161 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. O’Hara, J.: Renormalization of potentials and generalized centers. Adv. Appl. Math. 48, 365–392 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. O’Hara, J.: Minimal unfolded regions of a convex hull and parallel bodies. Hokkaido Math. J. 44(2), 175–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rachh, M., Steinerberger, S.: On the location of maxima of solutions of Schrödinger’s equation. arXiv:1608.06604

  21. Sakata, S.: Movement of centers with respect to various potentials. Trans. Am. Math. Soc. 367, 8347–8381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sakata, S.: Experimental investigation on the uniqueness of a center of a body, to appear in Ann. Polon. Math

  23. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shibata, K.: Where should a streetlight be placed in a triangle-shaped park? Elementary integro-differential geometric optics, http://www1.rsp.fukuoka-u.ac.jp/kototoi/igi-ari-4_E3_1.pdf

Download references

Acknowledgements

The author would like to express his deep gratitude to Professor Jun O’Hara, Professor Kazushi Yoshitomi, and Professor Hiroaki Aikawa. O’Hara gave him kind advice throughout writing this paper. Yoshitomi informed him of some cone conditions. Aikawa informed him of the proof of Lemma 2.3 and Remark 2.5. The author would like to thank the referees for their careful readings and useful suggestions. The author is partially supported by JSPS Kakenhi Grant Number 26887041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehiro Sakata.

Appendix: A Lower Bound for \(\tilde{R}(-1, \pi ,+\infty , {{\mathrm{diam}}}\Omega ,R_0)\)

Appendix: A Lower Bound for \(\tilde{R}(-1, \pi ,+\infty , {{\mathrm{diam}}}\Omega ,R_0)\)

Let \(\Omega \) be a convex body in \(\mathbb {R}^m\). Thanks to the convexity of \(\Omega \), we can take the uniform boundary inner cone of the complement of \(\Omega \) as a half-space. Let \(0< R_0 < {{\mathrm{diam}}}\Omega \). In this appendix, we give a lower bound for \(\tilde{R} = \tilde{R}(-1, \pi , +\infty ,{{\mathrm{diam}}}\Omega ,R_0)\) given in Lemma 3.8 with \(\alpha =-1, \kappa = \pi , \delta =+\infty \), and \(D={{\mathrm{diam}}}\Omega \). Let us estimate the root of the function

$$\begin{aligned} E (R) = \left( \int _{C\left( Re_1; \pi ,+\infty \right) \cap B_{{{\mathrm{diam}}}\Omega }(0)} -\int _{B_{{{\mathrm{diam}}}\Omega }(0) \setminus B_{R_0}(0)} \right) \left| \right. \xi \left| \right. ^{-(m+1)} d \xi . \end{aligned}$$
(6.1)

Here, we remark that, from Lemma 3.8 (3), if \(R\ge R_0\), then \(E(R)<0\). Thus we may assume \(R < R_0\) in what follows.

Let \(\varphi (R)=\arccos (R/{{\mathrm{diam}}}\Omega )\). Using polar coordinates, we obtain

$$\begin{aligned} E(R)&=\sigma _{m-2} \left( S^{m-2}\right) \int _0^{\varphi (R)} \left( \int _{R/\cos \theta }^{{{\mathrm{diam}}}\Omega } r^{-2}dr \right) \sin ^{m-2}\theta d\theta \nonumber \\&\quad -\sigma _{m-2} \left( S^{m-2}\right) \int _0^\pi \left( \int _{R_0}^{{{\mathrm{diam}}}\Omega } r^{-2} dr\right) \sin ^{m-2}\theta d\theta \nonumber \\&=\frac{\sigma _{m-2} \left( S^{m-2}\right) }{R} \left( \frac{\sin ^{m-1} \varphi (R)}{m-1} +\frac{R}{{{\mathrm{diam}}}\Omega } \int _{\varphi (R)}^\pi \sin ^{m-2}\theta d\theta \right. \nonumber \\&\quad \left. -\frac{R}{R_0}\int _0^\pi \sin ^{m-2}\theta d\theta \right) \nonumber \\&=: \frac{\sigma _{m-2} \left( S^{m-2}\right) }{R}f(R). \end{aligned}$$
(6.2)

Direct computation shows the following properties:

$$\begin{aligned} f'(R)&=\frac{1}{{{\mathrm{diam}}}\Omega } \int _{\varphi (R)}^\pi \sin ^{m-2}\theta d\theta -\frac{1}{R_0} \int _0^{\pi } \sin ^{m-2}\theta d\theta <0,\end{aligned}$$
(6.3)
$$\begin{aligned} f''(R)&=-\frac{\varphi '(R) \sin ^{m-2} \varphi (R)}{{{\mathrm{diam}}}\Omega } >0. \end{aligned}$$
(6.4)

Since we have

$$\begin{aligned} f'(0)= \left( \frac{1}{{{\mathrm{diam}}}\Omega } -\frac{2}{R_0} \right) \int _0^{\pi /2} \sin ^{m-2}\theta d\theta , \end{aligned}$$
(6.5)

we obtain

$$\begin{aligned} \tilde{R} \left( -1, \pi ,+\infty ,{{\mathrm{diam}}}\Omega , R_0\right)&> -\frac{f(0)}{f'(0)} \nonumber \\&=\frac{1}{\displaystyle (m-1)\left( \frac{2}{R_0}-\frac{1}{{{\mathrm{diam}}}\Omega } \right) \int _0^{\pi /2} \sin ^{m-2}\theta d\theta }\nonumber \\&\ge \frac{R_0}{\displaystyle 2(m-1)\int _0^{\pi /2} \sin ^{m-2}\theta d\theta }. \end{aligned}$$
(6.6)

For example, in the case of \(m=2\), the above lower bound coincides with \(R_0 / \pi \approx 0.3183 R_0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakata, S. Geometric Estimation of a Potential and Cone Conditions of a Body. J Geom Anal 27, 2155–2189 (2017). https://doi.org/10.1007/s12220-016-9756-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9756-1

Keywords

Mathematics Subject Classification

Navigation