Skip to main content
Log in

Kählerity and Negativity of Weil–Petersson Metric on Square Integrable Teichmüller Space

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The Weil–Petersson metric is a Hermitian metric originally defined on finite-dimensional Teichmüller spaces. Ahlfors proved that this metric is a Kähler metric and has some negative curvatures. Takhtajan and Teo showed that this result is also valid for the universal Teichmüller space equipped with a complex Hilbert manifold structure. In this paper, we stated that the Weil–Petersson metric can be also defined on a Hilbert manifold contained in the Teichmüller space of Fuchsian groups with Lehner’s condition, which we call the square integrable Teichmüller space, and proved that the results given by Ahlfors, Takhtajan, and Teo also hold in that case. Many parts of the proof were based on their ones. However, we needed more careful estimations in the infinite-dimensional case, which was achieved by two complex analytic characterizations of Lehner’s condition, by a certain integral equality for the partition of the upper half-plane by a Fuchisian group and by the invariant formula for the Bergman kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Curvature properties of Teichmüller’s space. J. Anal. Math. 9, 161–176 (1961)

    Article  MATH  Google Scholar 

  2. Ahlfors, L.V.: Some remarks on Teichmüller space of Riemann surfaces. Ann. Math. 74, 171–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bers, L.: On moduli of Riemann surfaces, Lectures at Forschungsinstitut für Mathematik, Eidgenössische Technische Hochschule, Zürich, mimeographed (1964)

  4. Bers, L.: Automorphic forms and general Teichmüller spaces. In: Proceedings of Conference on Complex Analysis, Minneapolis 1964, pp. 109–113. Springer (1965)

  5. Boulbaki, N.: Variétiés différentielles et analytiques, Eléments de mathématique XXXIII, Fascicule de résultats-Paragraghes 1 á 7, Hermann (1967)

  6. Chae, S.B.: Holomorphy and calculus in normed spaces. Monogr. Textbooks Pure Appl. Math. 92. Marcel Dekker, Inc., New York (1985)

  7. Cui, G.: Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces. Sci. China Ser. A 43, 267–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Earle, C.J., Gardiner, F.P., Lakic, N.: Asymptotic Teichmüller space, part I : the complex structure. Contemp. Math. 256, 17–38 (2000)

    Article  MATH  Google Scholar 

  9. Earle, C.J., Gardiner, F.P., Lakic, N.: Asymptotic Teichmüller space, part II : the metric structure. Contemp. Math. 355, 187–219 (2004)

    Article  MATH  Google Scholar 

  10. Moroianu, A.: Lectures on Kähler geometry. Lond. Math. Soc. Stud. Texts 69. Cambridge University Press, Cambridge (2007)

  11. Lang, S.: Differential and Riemannian Manifolds, 3rd edn. Grad. Texts in Math. 160. Springer, New York (1995)

  12. Lehner, J.: On the boundedness of integrable automorphic forms. Illinois J. Math. 18, 575–584 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Lehto, O.: Univalent functions and Teichmüller spaces. Grad. Texts in Math. 109. Springer, New York (1987)

  14. Mujica, J.: Complex analysis in Banach spaces. North-Holland Math. Stud. 120. North-Holland Publishing Co., Amsterdam (1986)

  15. Niebur, D., Sheingorn, M.: Characterization of Fuchsian groups whose integrable forms are bounded. Ann. Math. 106, 239–258 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rajeswara Rao, K.V.: On the boundedness of \(p\)-integrable automorphic forms. Proc. Am. Math. Soc. 44, 278–282 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Takhtajan, L.A., Teo, L.-P.: Weil–Petersson metric on the universal Teichmüller space. Mem. Am. Math. Soc. 183 (2006)

  18. Tang, S.: Some characterizations of the integrable Teichmüller space. Sci. China Math. 56, 541–551 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Taylor, A.E.: Analytic functions in general analysis. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 6, 277–292 (1937)

    MathSciNet  MATH  Google Scholar 

  20. Wolpert, S.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85, 119–145 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yanagishita, M.: Introduction of a complex structure on the \(p\)-integrable Teichmüller space. Ann. Acad. Sci. Fenn. 39, 947–971 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zorn, M.A.: Gâteaux differentiability and essential boundedness. Duke Math. J. 12, 579–583 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Yanagishita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagishita, M. Kählerity and Negativity of Weil–Petersson Metric on Square Integrable Teichmüller Space. J Geom Anal 27, 1995–2017 (2017). https://doi.org/10.1007/s12220-016-9748-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9748-1

Keywords

Mathematics Subject Classification

Navigation