Alberti, G., Bianchini, S., Crippa, G.: Structure of level sets and Sard-type properties of Lipschitz maps. Ann. della Scuola Normale Superiore di Pisa—Classe Sci. 12(4), 863–902 (2013)
MathSciNet
MATH
Google Scholar
Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–437 (1993)
MathSciNet
Article
MATH
Google Scholar
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, 1st edn. Oxford Science, Oxford (2000)
MATH
Google Scholar
Bucur, D., Zolésio, J.-P.: Free boundary problems and density perimeter. J. Differ. Equ. 126, 224–243 (1996)
MathSciNet
Article
MATH
Google Scholar
Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound. 5, 301–329 (2003)
MathSciNet
Article
MATH
Google Scholar
Burger, M., Matevosyan, N., Wolfram, M.-T.: A level set based shape optimization method for an elliptic obstacle problem. Math. Models Method Appl. Sci. 21(4), 619–649 (2011)
MathSciNet
Article
MATH
Google Scholar
Caraballo, D.G.: Areas of level sets of distance functions induced by asymmetric norms. Pac. J. Math. 218(1), 37–52 (2005)
MathSciNet
Article
MATH
Google Scholar
Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries. Advances in Design and Control, 2nd edn. SIAM, Philadelphia (2011)
Book
MATH
Google Scholar
Delfour, M.C., Zolésio, J.-P.: The new family of cracked sets and the image segmentation problem revisited. Commun. Inf. Syst. 4(1), 29–52 (2004)
MathSciNet
MATH
Google Scholar
Droske, M., Ring, W.: A Mumford-Shah level-set approach for geometric image registration. SIAM J. Appl. Math. 66(6), 2127–2148 (2006)
MathSciNet
Article
MATH
Google Scholar
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)
MATH
Google Scholar
Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)
MATH
Google Scholar
Kraft, D.: A Hopf–Lax formula for the time evolution of the level-set equation and a new approach to shape sensitivity analysis. Interfaces Free Bound. Preprint IGDK-2015-18. https://igdk1754.ma.tum.de/foswiki/pub/IGDK1754/Preprints/Kraft_2015A.pdf
Kraft, D.: A Hopf–Lax formula for the level-set equation and applications to PDE-constrained shape optimisation. In: Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics, pp. 498–503. IEEE Xplore (2014)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
MathSciNet
Article
MATH
Google Scholar
Yeh, J.: Real Analysis: Theory of Measure and Integration, 2nd edn. World Scientific, Singapore (2006)
Book
MATH
Google Scholar