Skip to main content
Log in

A Littlewood–Paley Type Decomposition and Weighted Hardy Spaces Associated with Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \((X, d, \mu )\) be a metric measure space endowed with a distance \(d\) and a nonnegative Borel doubling measure \(\mu \). Let \(L\) be a second-order non-negative self-adjoint operator on \(L^2(X)\). Assume that the semigroup \(e^{-tL}\) generated by \(L\) satisfies Gaussian upper bounds. In this article we establish a discrete characterization of weighted Hardy spaces \(H_{L, S, w}^{p}(X)\) associated with \(L\) in terms of the area function characterization, and prove its weighted atomic decomposition, where \(0<p\le 1\) and a weight \(w\) is in the Muckenhoupt class \(A_{\infty }\). Further, we introduce a Moser type estimate for \(L\) to show the discrete characterization for the weighted Hardy spaces \(H_{L, G, w}^{p}(X)\) associated with \(L\) in terms of the Littlewood–Paley function and obtain the equivalence between the weighted Hardy spaces in terms of the Littlewood–Paley function and area function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P.: On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated with elliptic operators on \({{\mathbb{R}}^n}\) and related estimates. Mem. Am. Math. Soc. 186(871), xviii+75 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Auscher, P., Ben Ali, B.: Maximal inequalities and Riesz transform estimates on \({L}^{p}\) spaces for Schrödinger operators with non-negative potentials. Ann. Inst. Fourier (Grenoble) 57, 1975–2013 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and hardy spaces (2005) (unpublished manuscript)

  4. Auscher, P., Martell, J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. III. Harmonic analysis of elliptic operators. J. Funct. Anal. 241, 703–746 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18, 192–248 (2008)

  6. Bernicot, F., Zhao, J.: New abstract Hardy spaces. J. Funct. Anal. 255, 1761–1796 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bui, T.A., Duong, X.T.: Weighted Hardy spaces associated to operators and boundedness of singular integrals. arXiv:1202.2063

  8. Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61, 601–628 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Coifman, R.: A real variable characterization of \({H}^{p}\). Studia Math. 51, 269–274 (1974)

    MathSciNet  MATH  Google Scholar 

  10. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coulhon, T., Duong, X.T., Li, X.D.: Littlewood-Paley-Stein functions on complete Riemannian manifolds for \(1\le p\le 2\). Studia Math. 154, 37–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via Phragmén-Lindelöf theorem. Proc. Lond. Math. Soc. 96, 507–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cowling, M., Sikora, A.: A spectral multiplier theorem on SU(2). Math. Z. 238, 1–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duong, X.T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264(6), 1409–1437 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duong, X.T., Yan, L.X.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fefferman, C., Stein, E.M.: \({H}^{p}\) spaces of several variables. Acta Math. 129, 137–195 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frazier, M., Jawerth, : A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and study of functions. In: CBMS Regional Conferences Series in Mathematics, vol. 79 (1991)

  19. García-Cuerva, J., Rubio de Francia, J.L.: North Holland Mathematics Studies. Weighted norm inequalities and related topics. North Holland, Amsterdam (1985)

    Google Scholar 

  20. Gong, R.M., Yan, L.X.: Littlewood-Paley and spectral multipliers on weighted \({L}^{p}\) spaces. J. Geom. Anal. 24, 873–900 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hofmann, S., Lu, G.Z., Mitrea, D., Mitrea, M., Yan, L.X.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214(1007), vi+78 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344, 37–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in \(L^p\), Sobolev and Hardy spaces. Ann. Sci. École Norm. Sup. 44, 723–800 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, R.J., Yang, D.C.: New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258(4), 1167–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Latter, R.H.: A decomposition of \({H}^{p}({\mathbb{R}}^n)\) in terms of atoms. Studia Math. 62, 92–102 (1977)

    MathSciNet  Google Scholar 

  26. Liu, S.Y., Song, L.: An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators. J. Funct. Anal. 265, 2703–2723 (2013)

    MathSciNet  Google Scholar 

  27. Meyer, Y.: Ondelettes et opérateurs. Hermann, Paris (1990)

    MATH  Google Scholar 

  28. Ouhabaz, E.M.: London Mathematical Society Monographs. Analysis of heat equations on domains. Princeton University Press, Princeton (2005)

    Google Scholar 

  29. Saloff-Coste, L.: Aspects of Sobolev-type inequalities. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  30. Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247, 643–662 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Song, L., Yan, L.X.: Riesz transforms associated to Schrödinger operators on weighted Hardy spaces. J. Funct. Anal. 259, 1466–1490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stein, E.M.: Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  33. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  34. Strömberg, J.-O.: Lecture Notes in Mathematics. Weighted Hardy spaces. Springer, Berlin (1989)

    Google Scholar 

  35. Wu, S.: A wavelet characterization for weighted Hardy spaces. Rev. Mat. Iberoam. 8, 329–349 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yan, L.X.: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360, 4383–4408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yosida, K.: Functional Analysis, 5th edn. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for careful reading and the helpful suggestions. X.T. Duong and J. Li are supported by the Australia Research Council (ARC) under Grant no. ARC-DP120100399. J. Li is also supported by the NNSF of China Grant No. 11001275. L. Yan is supported by NNSF of China (Grant Nos. 10925106 and 11371378). Part of this work was done during L. Yan’s stay at Macquarie University. L. Yan would like to thank Macquarie University for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Thinh Duong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, X.T., Li, J. & Yan, L. A Littlewood–Paley Type Decomposition and Weighted Hardy Spaces Associated with Operators. J Geom Anal 26, 1617–1646 (2016). https://doi.org/10.1007/s12220-015-9602-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9602-x

Keywords

Mathematics Subject Classification

Navigation