Advertisement

The Journal of Geometric Analysis

, Volume 26, Issue 1, pp 616–629 | Cite as

Lower Bounds on the Kobayashi Metric Near a Point of Infinite Type

  • Tran Vu Khanh
Article

Abstract

Under a potential-theoretical hypothesis named f-property which holds for all pseudoconvex domains of finite type and many examples of infinite type, we give a new method for constructing a family of bumping functions and hence plurisubharmonic peak functions with good estimates. The rate of lower bounds on the Kobayashi metric follows by the estimates of peak functions. The application to the continuous extendibility of proper holomorphic maps is given.

Keywords

Kobayashi metric Proper holomorphic map Finite and infinite type 

Mathematics Subject Classification

Primary 32F45 32H35 

Notes

Acknowledgments

This article was written while the author was a visiting member at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank this institution for its hospitality and support. He is also extremely grateful for the support given by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01–2012.16.

References

  1. 1.
    Khanh, T.V., Zampieri, G.: Regularity of the \(\bar{\partial }\)-Neumann problem at point of infinite type. J. Funct. Anal. 259(11), 2760–2775 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Khanh, T.V., Zampieri, G.: Necessary geometric and analytic conditions for general estimates in the \(\bar{\partial }\)-Neumann problem. Invent. Math. 188(3), 729–750 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Kohn, J.J.: Superlogarithmic estimates on pseudoconvex domains and CR manifolds. Ann. Math. 156(1), 213–248 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Catlin, D.: Necessary conditions for subellipticity of the \(\bar{\partial } \)-Neumann problem. Ann. Math. 117(1), 147–171 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Catlin, D.: Subelliptic estimates for the \(\overline{\partial }\)-Neumann problem on pseudoconvex domains. Ann. Math. 126(1), 131–191 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    McNeal, J.D.: Lower bounds on the Bergman metric near a point of finite type. Ann. Math. 136(2), 339–360 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Khanh, T.V.: A general method of weights in the \(\bar{\partial }\)-Neumann problem. Ph.D. thesis, University of Padova, Italy (2010). arxiv:1001.5093v1
  8. 8.
    Catlin, D.: Estimates of invariant metrics on pseudoconvex domains of dimension two. Math. Z. 200(3), 429–466 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    McNeal, J.D.: Convex domains of finite type. J. Funct. Anal. 108(2), 361–373 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Diederich, K., Fornæss, J.E.: Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary. Ann. Math. 110(3), 575–592 (1979)zbMATHCrossRefGoogle Scholar
  11. 11.
    Cho, S.: A lower bound on the Kobayashi metric near a point of finite type in \({ C}^n\). J. Geom. Anal. 2(4), 317–325 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Graham, I.: Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \(C^{n}\) with smooth boundary. Trans. Am. Math. Soc. 207, 219–240 (1975)zbMATHGoogle Scholar
  13. 13.
    Herbort, G.: Invariant metrics and peak functions on pseudoconvex domains of homogeneous finite diagonal type. Math. Z. 209(2), 223–243 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lee, L.: Asymptotic behavior of the Kobayashi metric on convex domains. Pacific J. Math. 238(1), 105–118 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kohn, J.J.: Subellipticity of the \(\bar{\partial }\)-Neumann problem on pseudo-convex domains: sufficient conditions. Acta Math. 142(1–2), 79–122 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lee, S.: Asymptotic behavior of the Kobayashi metric on certain infinite-type pseudoconvex domains in \({ C}^2\). J. Math. Anal. Appl. 256(1), 190–215 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Bedford, E., Fornæss, J.E.: Biholomorphic maps of weakly pseudoconvex domains. Duke Math. J. 45(4), 711–719 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Henkin, G.M.: An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain. Dokl. Akad. Nauk SSSR 210, 1026–1029 (1973)MathSciNetGoogle Scholar
  19. 19.
    Range, R.M.: The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains. Pacific J. Math. 78(1), 173–189 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Fornæss, J.E., Sibony, N.: Construction of P.S.H. functions on weakly pseudoconvex domains. Duke Math. J. 58(3), 633–655 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Khanh, T.V.: Supnorm and \(f\)-hölder estimates for \(\bar{\partial }\) on convex domains of general type in \(\mathbb{C}^2\). J. Math. Anal. Appl. 403, 522531 (2013)Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2015

Authors and Affiliations

  1. 1.School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia
  2. 2.Tan Tao UniversityTan Duc e-cityVietnam

Personalised recommendations