Skip to main content
Log in

Euclidean Embeddings and Riemannian Bergman Metrics

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Consider the sum of the first N eigenspaces for the Laplacian on a Riemannian manifold. A basis for this space determines a map to Euclidean space and for N sufficiently large the map is an embedding. In analogy with a fruitful idea of Kähler geometry, we define (Riemannian) Bergman metrics of degree N to be those metrics induced by such embeddings. Our main result is to identify a natural sequence of Bergman metrics approximating any given Riemannian metric. In particular we have constructed finite dimensional symmetric space approximations to the space of all Riemannian metrics. Moreover the construction induces a Riemannian metric on that infinite dimensional manifold which we compute explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4(4), 373–398 (1994). MR 1280119 (95g:58228)

    Article  MATH  MathSciNet  Google Scholar 

  2. Clarke, B.: The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calc. Var. Partial Differ. Equ. 39(3–4), 533–545 (2010). MR 2729311 (2011i:58011)

    Article  MATH  Google Scholar 

  3. Chen, X., Sun, S.: Space of Kähler Metrics (V)-Kähler Quantization. Metric and differential geometry. Springer, Berlin (2012)

    Book  Google Scholar 

  4. DeWitt, B.S.: Quantum theories of gravity. General Relativity and Gravitation vol. 1(2), pp. 181–189. Springer, Berlin (1970/71). MR 0398424 (53 #2275)

  5. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975). MR 0405514 (53 #9307)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donaldson, S.K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59(3), 479–522 (2001). MR 1916953 (2003j:32030)

    MATH  MathSciNet  Google Scholar 

  7. Donaldson, S.K.: Scalar curvature and projective embeddings. II. Q. J. Math. 56(3), 345–356 (2005). MR 2161248 (2006f:32033)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duistermaat, J.J.: Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27, 207–281 (1974). MR 0405513 (53 #9306)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ebin, D.G.: The manifold of Riemannian metrics. Global Analysis, pp. 11–40, (Proc. Sympos. Pure Math., vol. XV, Berkeley, Calif., 1968). AMS, Providence, RI (1970). MR 0267604(42 #2506)

  10. Freed, D.S., Groisser, D.: The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group. Michigan Math. J. 36(3), 323–344 (1989). MR 1027070 (91a:58039)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferrari, F., Klevtsov, S., Zelditch, S.: Random Kähler metrics. Nuclear Phys. B 869(1), 89–110 (2013). MR 3009224

    Article  MATH  MathSciNet  Google Scholar 

  12. Gil-Medrano, O., Michor, P.W.: The Riemannian manifold of all Riemannian metrics. Quart. J. Math. Oxford Ser. (2) 42(166), 183–202 (1991). MR 1107281 (92f:58024)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guillemin, V.: Some classical theorems in spectral theory revisited. Seminar on singularities of solutions of linear partial differential equations (Inst. Adv. Study, Princeton, NJ, 1977/78), Annals of Mathematics Studies, vol. 91, pp. 219–259. Princeton University Press, Princeton, NJ (1979). MR 547021 (81b:58045)

  14. Hörmander, L.: The analysis of linear partial differential operators III: Pseudo-differential operators. Classics in Mathematics. Springer, Berlin (2007). Reprint of the 1994 edition. MR 2304165(2007k:35006)

  15. Hörmander, L.: The analysis of linear partial differential operators IV: Fourier integral operators. Classics in Mathematic. Springer, Berlin (2009). Reprint of the 1994 edition (2009). MR 2512677 (2010e:35003)

  16. Jones, P.W., Maggioni, M., Schul, R.: Universal local parametrizations via heat kernels and eigenfunctions of the Laplacian. Ann. Acad. Sci. Fenn. Math. 35(1), 131–174 (2010). MR 2643401 (2011g:58038)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007). MR 2322706 (2008d:60120)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd (ed.). Springer, Berlin (2001). Translated from the 1978 Russian original by Stig I. Andersson. MR 1852334 (2002d:47073)

  19. Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18, 380–385 (1966). MR 0198393 (33 #6551)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32(1), 99–130 (1990). MR 1064867 (91j:32031)

    MATH  Google Scholar 

  21. Widom, H.: Eigenvalue distribution theorems for certain homogeneous spaces. J. Funct. Anal. 32(2), 139–147 (1979). MR 534671 (80h:58054)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zelditch, S.: Fine structure of Zoll spectra. J. Funct. Anal. 143(2), 415–460 (1997). MR 1428823 (98g:58173)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Notices 1998(6),, 317–331 (1998). MR 1616718 (99g:32055)

  24. Zelditch, S.: Real and complex zeros of Riemannian random waves. Spectral analysis in geometry and number theory. Contemporary Mathematics, vol. 484, pp. 321–342. AMS, Providence, RI (2009). MR 1500155 (2010c:58040)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Potash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potash, E. Euclidean Embeddings and Riemannian Bergman Metrics. J Geom Anal 26, 499–528 (2016). https://doi.org/10.1007/s12220-015-9560-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9560-3

Keywords

Mathematics Subject Classification

Navigation