The Journal of Geometric Analysis

, Volume 26, Issue 1, pp 1–23

An Extension of Hsiung–Minkowski Formulas and Some Applications



We prove a generalization of Hsiung–Minkowski formulas for closed submanifolds in semi-Riemannian manifolds with constant curvature. As a corollary, we obtain volume and area upper bounds for \(k\)-convex hypersurfaces in terms of a weighted total \(k\)-th mean curvature of the hypersurface. We also obtain some Alexandrov-type results and some eigenvalue estimates for hypersurfaces.


Hsiung–Minkowski formulas Alexandrov’s theorem Conformal Killing vector fields Eigenvalue estimate 

Mathematics Subject Classification

Primary 53C40 Secondary 53C50 


  1. 1.
    Aledo, J.A., Alías, L.J., Romero, A.: Integral formulas for compact space-like hypersurfaces in de Sitter space: applications to the case of constant higher order mean curvature. J. Geom. Phys. 31(2), 195–208 (1999)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alencar, H., Colares, A.G.: Integral formulas for the \(r\)-mean curvature linearized operator of a hypersurface. Ann. Glob. Anal. Geom. 16(3), 203–220 (1998)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Alencar, H., do Carmo, M., Rosenberg, H.: On the first eigenvalue of the linearized operator of the \(r\)-th mean curvature of a hypersurface. Ann. Glob. Anal. Geom. 11(4), 387–395 (1993)MATHCrossRefGoogle Scholar
  4. 4.
    Alías, L.J., Brasil Jr. A., Colares, A.G.: Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications. Proc. Edinb. Math. Soc. 46(2), 465–488 (2003)Google Scholar
  5. 5.
    Barbosa, J.L., Colares, A.G.: Stability of hypersurfaces with constant-mean curvature. Ann. Glob. Anal. Geom. 15(3), 277–297 (1997)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. de l’IHÉS 117(1), 247–269 (2013)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, B.-Y., Yano, K.: Integral formulas for submanifolds and their applications. J. Differ. Geom. 5(3–4), 467–477 (1971)MATHMathSciNetGoogle Scholar
  8. 8.
    Cheng, Q.-M., Ishikawa, S.: Spacelike hypersurfaces with constant scalar curvature. Manuscr. Math. 95(4), 499–505 (1998)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    De Lellis, C., Topping, P.M.: Almost-Schur lemma. Calc. Var. Partial Differ. Equ. 43, 347–354 (2012)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Garay, O.J.: An application of Reilly’s formula. Bull. Lond. Math. Soc. 21(2), 176–178 (1989)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Garding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8(6), 957–965 (1959)MATHMathSciNetGoogle Scholar
  12. 12.
    Grosjean, J.F.: Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds. Pac. J. Math. 206(1), 93–112 (2002)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Heintze, E.: Extrinsic upper bounds for \(\lambda _1\). Math. Ann. 280(3), 389–402 (1988)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Hsiung, C.-C.: Some integral formulas for closed hypersurfaces in Riemannian space. Pac. J. Math. 6(2), 291–299 (1956)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Koh, S.-E.: A characterization of round spheres. Proc. Am. Math. Soc. 126(12), 3657–3660 (1998)MATHCrossRefGoogle Scholar
  16. 16.
    Koh, S.-E.: Sphere theorem by means of the ratio of mean curvature functions. Glasg. Math. J. 42(1), 91–95 (2000)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Koh, S.-E., Lee, S.-W.: Addendum to the paper: sphere theorem by means of the ratio of mean curvature functions. Glasg. Math. J. 43(2), 275–276 (2001)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Koiso, N.: Hypersurfaces of Einstein manifolds. In: Annales scientifiques de l’École Normale Supérieure, vol. 14, pp. 433–443. Société mathématique de France, Paris (1981)Google Scholar
  19. 19.
    Kwong, K.-K.: On an inequality of Andrews, De Lellis, and Topping. J. Geom. Anal. 1–14 (2012)Google Scholar
  20. 20.
    Kwong, K.-K.: On convex hypersurfaces in space forms and eigenvalues estimates for differential forms. arXiv:1207.3999 (2012)
  21. 21.
    Kwong, K.-K., Miao, P.: A new monotone quantity along the inverse mean curvature flow in \(\mathbb{R}^n\). Pac. J. Math. 267(2), 417–422 (2014)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Montiel, S., Ros, A.: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differ. Geom. 52, 279–296 (1991)MathSciNetGoogle Scholar
  23. 23.
    Raulot, S., Savo, A.: On the first eigenvalue of the Dirichlet-to-Neumann operator on forms. J. Funct. Anal. 262(3), 889–914 (2012)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Reilly, R.C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differ. Geom. 8, 465–477 (1973)MATHMathSciNetGoogle Scholar
  25. 25.
    Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoam. 3(3), 447–453 (1987)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Shetty, D.J., Amur, K.: Integral formulas for submanifolds and their applications. J. Differ. Geom. 15(4), 513–529 (1980)MATHMathSciNetGoogle Scholar
  27. 27.
    Strübing, W.: On integral formulas for submanifolds of spaces of constant curvature and some applications. Manuscr. Math. 49(2), 177–194 (1984)MATHCrossRefGoogle Scholar
  28. 28.
    Veeravalli, A.R.: On the first Laplacian eigenvalue and the center of gravity of compact hypersurfaces. Comment. Math. Helv. 76(1), 155–160 (2001)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2014

Authors and Affiliations

  1. 1.Department of MathematicsNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations