The Journal of Geometric Analysis

, Volume 25, Issue 2, pp 1185–1210 | Cite as

Compactness of Relatively Isospectral Sets of Surfaces Via Conformal Surgeries

  • Pierre AlbinEmail author
  • Clara L. Aldana
  • Frédéric Rochon


We introduce a notion of relative isospectrality for surfaces with boundary having possibly non-compact ends either conformally compact or asymptotic to cusps. We obtain a compactness result for such families via a conformal surgery that allows us to reduce to the case of surfaces hyperbolic near infinity recently studied by Borthwick and Perry, or to the closed case by Osgood, Phillips, and Sarnak if there are only cusps.


Inverse spectral problem Analytic surgery Hyperbolic cusps Hyperbolic funnels Relatively isospectral 

Mathematics Subject Classification

58J53 57R65 58G11 35P20 



The authors are grateful to David Borthwick, Gilles Carron, Andrew Hassell, Rafe Mazzeo, and Richard Melrose for helpful conversations and to the anonymous referee for their comments.


  1. 1.
    Albin, P., Aldana, C.L., Rochon, F.: Ricci flow and the determinant of the Laplacian on non-compact surfaces. Commun. Partial Differ. Equ. 38(4), 711–749 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aldana, C.: Isoresonant conformal surfaces with cusps and boundedness of the relative determinant. Commun. Anal. Geom. 18(5), 1009–1048 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Anderson, M.T.: Remarks on the compactness of isospectral sets in low dimensions. Duke Math. J. 63(3), 699–711 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brooks, R., Glezen, P.: An L p spectral bootstrap theorem. In: Geometry of the Spectrum, Seattle, WA, 1993. Contemp. Math., vol. 173, pp. 89–97. Am. Math. Soc., Providence (1994) CrossRefGoogle Scholar
  5. 5.
    Borthwick, D., Judge, C., Perry, P.A.: Determinants of Laplacians and isopolar metrics on surfaces of infinite area. Duke Math. J. 118(1), 61–102 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Borthwick, D., Perry, P.A.: Inverse scattering results for metrics hyperbolic near infinity. J. Geom. Anal. 21(2), 305–333 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brooks, R., Perry, P., Peter Petersen, V.: Compactness and finiteness theorems for isospectral manifolds. J. Reine Angew. Math. 426, 67–89 (1992) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Brooks, R., Perry, P., Yang, P.: Isospectral sets of conformally equivalent metrics. Duke Math. J. 58(1), 131–150 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bunke, U.: Relative index theory. J. Funct. Anal. 105, 63–76 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Carron, G.: Déterminant relatif et la fonction Xi. Am. J. Math. 124(2), 307–352 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Chang, S.-Y.A., Qing, J.: The zeta functional determinants on manifolds with boundary. II. Extremal metrics and compactness of isospectral set. J. Funct. Anal. 147(2), 363–399 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Chen, R., Xu, X.: Compactness of isospectral conformal metrics and isospectral potentials on a 4-manifold. Duke Math. J. 84(1), 131–154 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Chang, S.-Y.A., Yang, P.C.-P.: Isospectral conformal metrics on 3-manifolds. J. Am. Math. Soc. 3(1), 117–145 (1990) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Donnelly, H.: Essential spectrum and heat kernel. J. Funct. Anal. 75, 326–381 (1987) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gilkey, P.B.: Leading terms in the asymptotics of the heat equation. In: Geometry of Random Motion, Ithaca, NY, 1987. Contemp. Math., vol. 73, pp. 79–85. Am. Math. Soc., Providence (1988) CrossRefGoogle Scholar
  17. 17.
    Gordon, C., Perry, P., Schueth, D.: Isospectral and isoscattering manifolds: a survey of techniques and examples. In: Geometry, Spectral Theory, Groups, and Dynamics. Contemp. Math., vol. 387, pp. 157–179 (2004) CrossRefGoogle Scholar
  18. 18.
    Guillarmou, C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1), 1–37 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Guillopé, L., Zworski, M.: Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Funct. Anal. 129(2), 364–389 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hassell, A., Zelditch, S.: Determinants of Laplacians in exterior domains. Int. Math. Res. Not. 18, 971–1004 (1999) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kim, Y.-H.: Surfaces with boundary: their uniformizations, determinants of Laplacians, and isospectrality. Duke Math. J. 144(1), 73–107 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Melrose, R.B.: Isospectral sets of drumheads are compact in \(\mathcal{C}^{\infty}\) (1983). Unpublished preprint from MSRI, 048-83. Available online at
  23. 23.
    Melrose, R.B.: Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In: Spectral and Scattering Theory, Sanda, 1992. Lecture Notes in Pure and Appl. Math., vol. 161, pp. 85–130. Dekker, New York (1994) Google Scholar
  24. 24.
    Mazzeo, R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically negative curvature. J. Funct. Anal. 75(2), 260–310 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43–69 (1967) zbMATHMathSciNetGoogle Scholar
  26. 26.
    Osgood, B., Phillips, R., Sarnak, P.: Compact isospectral sets of plane domains. Proc. Natl. Acad. Sci. USA 85(15), 5359–5361 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Osgood, B., Phillips, R., Sarnak, P.: Compact isospectral sets of surfaces. J. Funct. Anal. 80(1), 212–234 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80(1), 148–211 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Osgood, B., Phillips, R., Sarnak, P.: Moduli space, heights and isospectral sets of plane domains. Ann. Math. 129, 293–362 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Zhou, G.: Compactness of isospectral compact manifolds with bounded curvatures. Pac. J. Math. 181(1), 187–200 (1997) CrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2013

Authors and Affiliations

  • Pierre Albin
    • 1
    Email author
  • Clara L. Aldana
    • 2
  • Frédéric Rochon
    • 3
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Max Planck Institut für Gravitationsphysik (AEI)GolmGermany
  3. 3.Département de MathématiquesUQÀMMontréalCanada

Personalised recommendations