The Journal of Geometric Analysis

, Volume 25, Issue 2, pp 883–909 | Cite as

The Pluriclosed Flow on Nilmanifolds and Tamed Symplectic Forms

  • Nicola Enrietti
  • Anna Fino
  • Luigi VezzoniEmail author


We study the evolution of strong Kähler with torsion (SKT) structures via the pluriclosed flow on complex nilmanifolds, i.e., on compact quotients of simply connected nilpotent Lie groups by discrete subgroups endowed with an invariant complex structure. Adapting to our case the techniques introduced by Jorge Lauret for studying Ricci flow on homogeneous spaces, we show that for SKT Lie algebras the pluriclosed flow is equivalent to a bracket flow, and we prove a long time existence result in the nilpotent case. Finally, we introduce a natural flow for evolving symplectic forms taming a complex structure, by considering the evolution of symplectic forms via the flow induced by the Bismut Ricci form.


Hermitian metrics Symplectic forms Nilpotent Lie groups 

Mathematics Subject Classification

53C15 53B15 53C30 



The authors would like to thank Jorge Lauret for useful conversations and the referee for helpful comments on the paper.


  1. 1.
    Apostolov, V., Gualtieri, M.: Generalized Kähler manifolds, commuting complex structures, and split tangent bundles. Commun. Math. Phys. 271(2), 561–575 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bismut, J.M.: A local index theorem for non-Kähler manifolds. Math. Ann. 284(4), 681–699 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Eberlein, P.: Geometry of 2-step nilpotent Lie groups. Ann. Sci. ENS, 611–660 (1994) Google Scholar
  4. 4.
    Enrietti, N.: Static SKT metrics on Lie groups. Manuscr. Math. 140, 557–571 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Enrietti, N., Fino, A.: Special Hermitian metrics and Lie groups. Differ. Geom. Appl. 29(Suppl. 1), 211–219 (2011) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Enrietti, N., Fino, A., Vezzoni, L.: Hermitian Symplectic structures and SKT metrics. J. Symplectic Geom. 10(2), 203–223 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fino, A., Parton, M., Salamon, S.: Families of strong KT structures in six dimensions. Comment. Math. Helv. 79(2), 317–340 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fino, A., Tomassini, A.: Non-Kähler solvmanifolds with generalized Kähler structure. J. Symplectic Geom. 7(2), 1–14 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Unione Mat. Ital., B (7) 11(Suppl. 2), 257–288 (1997) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Gauduchon, P.: La 1-forme de torsione d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Inoue, M.: On surfaces of class VII0. Invent. Math. 24, 269–310 (1974) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ivanov, S., Papadopoulos, G.: Vanishing theorems and string backgrounds. Class. Quantum Gravity 18(6), 1089–1110 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lauret, J.: The Ricci flow for simply connected nilmanifolds. Commun. Anal. Geom. 19(5), 831–854 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Madsen, T., Swann, A.: Invariant strong KT geometry on four-dimensional solvable Lie groups. J. Lie Theory 21(1), 55–70 (2011) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Li, T.-J., Zhang, W.: Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds. Commun. Anal. Geom. 17(4), 651–683 (2009) CrossRefzbMATHGoogle Scholar
  16. 16.
    Popovici, D.: Limits of projective manifolds under holomorphic deformations. Preprint arXiv:1003.3605
  17. 17.
    Rossi, F.A., Tomassini, A.: On strong Kähler and astheno-Kähler metrics on nilmanifolds. Adv. Geom. 12(3), 431–446 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 16, 3101–3133 (2010) MathSciNetGoogle Scholar
  19. 19.
    Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. 13(3), 601–634 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Vezzoni, L.: A note on Canonical Ricci forms on 2-step nilmanifolds. Proc. Am. Math. Soc. 141(1), 325–333 (2013) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2013

Authors and Affiliations

  1. 1.Dipartimento di Matematica G. PeanoUniversità di TorinoTorinoItaly

Personalised recommendations