Advertisement

The Journal of Geometric Analysis

, Volume 25, Issue 2, pp 740–760 | Cite as

Effective Very Ampleness of the Canonical Line Bundles on Ball Quotients

Article

Abstract

We give a criterion of very ampleness of the canonical line bundle on a compact complex manifold in terms of Calabi’s diastasis function with respect to the Bergman metric. As an application, we get an effective result on very ampleness of the canonical line bundle for smooth compact ball quotients.

Keywords

Calabi’s diastasis function The Bergman metric Canonical line bundle 

Mathematics Subject Classification

32Q40 32A25 

References

  1. 1.
    Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. Astérisque 32–33, 43–72 (1976) MathSciNetGoogle Scholar
  2. 2.
    Berndtsson, B.: An eigenvalue estimate for the \(\bar{\partial}\)-Laplacian. J. Differ. Geom. 60, 295–313 (2002) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Borel, A.: Compact Clifford-Klein forms of symmetric spaces. Topology 2, 111–122 (1963) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Calabi, E.: Isometric imbeddings of complex manifolds. Ann. Math. 58, 1–23 (1953) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, B.-Y., Fu, S.: Stability of the Bergman kernel on a tower of coverings. Preprint Google Scholar
  6. 6.
    DeGeorge, D., Wallach, N.: Limit formulas for multiplicities in L 2(ΓG). Ann. Math. 107, 133–150 (1978) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Donnelly, H.: Elliptic operators and covering of Riemannian manifolds. Math. Z. 233, 303–308 (1996) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Farkas, H.M.: Unramified double coverings of hyperelliptic surfaces. J. Anal. Math. 20, 150–155 (1976) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Greene, R.E., Wu, H.: In: Function Theory on Manifolds Which Possess a Pole. Lect. Notes in Math., vol. 699 (1979) Google Scholar
  10. 10.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978) zbMATHGoogle Scholar
  11. 11.
    Gromov, M.: Kähler hyperbolicity and L 2-Hodge theory. J. Differ. Geom. 33, 263–292 (1991) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Hersonsky, S., Paulin, F.: On the volumes of complex hyperbolic manifolds. Duke Math. J. 84, 719–737 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kazhdan, D.: Arithmetic varieties and their fields of quasi-definition, Actes du Congrès International Mathématiciens, vol. II, pp. 321–325. Gauthier-Villas, Paris (1970) Google Scholar
  14. 14.
    Kobayashi, S.: Geometry of bounded domains. Trans. Am. Math. Soc. 92, 267–289 (1959) CrossRefzbMATHGoogle Scholar
  15. 15.
    Loi, A.: Calabi’s diastasis function for Hermitian symmetric spaces. Differ. Geom. Appl. 24, 311–319 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Machlachlan, C.: Smooth coverings of hyperelliptic surfaces. Q. J. Math. 22, 117–123 (1971) CrossRefGoogle Scholar
  17. 17.
    Martens, H.H.: A remark on Abel’s theorem and the mapping of linear series. Comment. Math. Helv. 52, 557–559 (1977) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mumford, D.: An algebraic surface with K ample, K 2=9, p g=q=0. Am. J. Math. 101, 233–244 (1979) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Ohsawa, T.: A remark on Kazhdan’s theorem on sequences of Bergman metrics. Kyushu J. Math. 63, 133–137 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Ohsawa, T.: A tower of Riemann surfaces whose Bergman kernels jump at the roof. Publ. Res. Inst. Math. Sci. 46, 473–478 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Rhodes, J.A.: Sequences of metrics on compact Riemann surfaces. Duke Math. J. 72, 725–738 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Wang, X.: Covering stability of Bergman kernels on Kähler hyperbolic manifolds. Preprint Google Scholar
  23. 23.
    Yau, S.T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74, 1798–1799 (1977) CrossRefzbMATHGoogle Scholar
  24. 24.
    Yeung, S.K.: Betti numbers on a tower of coverings. Duke Math. J. 73, 201–226 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Yeung, S.K.: Very ampleness of line bundles and canonical embeddings of coverings of manifolds. Compos. Math. 123, 209–223 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Yeung, S.K.: Effective estimates on the very ampleness of the canonical line bundle of locally Hermitian symmetric spaces. Trans. Am. Math. Soc. 353, 1387–1401 (2000) CrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2013

Authors and Affiliations

  1. 1.Department of MathematicsTongji UniversityShanghaiChina

Personalised recommendations