Skip to main content
Log in

On Complete Constant Mean Curvature Vertical Multigraphs in \(\mathbb{E}(\kappa,\tau)\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove that any complete surface with constant mean curvature in a homogeneous space \(\mathbb{E}(\kappa,\tau)\) which is transversal to the vertical Killing vector field is, in fact, a vertical graph. As a consequence we get that any orientable, parabolic, complete, immersed surface with constant mean curvature H in \(\mathbb{E}(\kappa,\tau)\) (different from a horizontal slice in \(\mathbb{S}^{2}\times\mathbb{R}\)) is either a vertical cylinder or a vertical graph (in both cases, it must be 4H 2+κ≤0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 197, 123–138 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Collin, P., Rosenberg, H.: Construction of harmonic diffeomorphisms and minimal graphs. Ann. Math. 172, 1879–1906 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 82(1), 87–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Daniel, B., Hauswirth, L.: Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group. Proc. Lond. Math. Soc. (3) 98(2), 445–470 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daniel, B., Hauswirth, L., Mira, P.: Lecture notes on homogeneous 3-manifolds. In: 4th KIAS Workshop on Differential Geometry, Korea Institute for Advanced Study, Seoul, Korea (2009)

  6. Espinar, J.M., Rosenberg, H.: Complete constant mean curvature surfaces and Bernstein type theorems in M 2×R. J. Differ. Geom. 82(3), 611–628 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Fernández, I., Mira, P.: Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space. Transl. Am. Math. Soc. 361, 5737–5752 (2009)

    Article  MATH  Google Scholar 

  8. Fischer-Colbrie, D.: On complete minimal surfaces with finite Morse index in 3-manifolds. Invent. Math. 82, 121–132 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Folha, A., Melo, S.: The Dirichlet problem for constant mean curvature graphs in \(\mathbb{H}^{2}\times\mathbb{R}\) over unbounded domains. Pac. J. Math. 251(1), 37–65 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hauswirth, L., Rosenberg, H., Spruck, J.: On complete mean curvature \(\frac{1}{2}\) surfaces in \(\mathbb{H} ^{2}\times\mathbb{R}\). Commun. Anal. Geom. 16, 989–1005 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hauswirth, L., Rosenberg, H., Spruck, J.: Infinite boundary value problems for constant mean curvature graphs in \(\mathbb{H}\times\mathbb{R}\) and \(\mathbb{S}\times \mathbb{R}\). Am. J. Math. 131, 195–226 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Manzano, J.M.: On the classification of Killing submersions and their isometries. Preprint, available at arXiv:1211.2115 [math.DG]

  13. Manzano, J.M., Pérez, J., Rodríguez, M.M.: Parabolic stable surfaces with constant mean curvature. Calc. Var. Partial Differ. Equ. 42(1–2), 137–152 (2011)

    Article  MATH  Google Scholar 

  14. Mazet, L., Rodríguez, M.M., Rosenberg, H.: The Dirichlet problem for the minimal surface equation—with possible infinite boundary data—over domains in a Riemannian surface. Proc. Lond. Math. Soc. 102(3), 985–1023 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Meeks, W.H. III, Pérez, J., Ros, A.: Stable constant mean curvature surfaces. In: Ji, L., Li, P., Schoen, R., Simon, L. (eds.) Handbook of Geometrical Analysis, vol. 1, pp. 301–380. International Press, Somerville (2008)

    Google Scholar 

  16. Melo, S.: Minimal graphs in PSL\(_{2}(\mathbb{R})\) over unbounded domains. Preprint

  17. Nelli, B., Rosenberg, H.: Minimal surfaces in \(\mathbb{H}^{2}\times\mathbb{R}\). Bull. Braz. Math. Soc. 33(2), 263–292 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nelli, B., Rosenberg, H.: Global properties of constant mean curvature surfaces in \(\mathbb{H} ^{2}\times\mathbb{R}\). Pac. J. Math. 226(1), 137–152 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Peñafiel, C.: Graphs and multi-graphs in homogeneous 3-manifolds with isometry groups of dimension 4. Proc. Am. Math. Soc. 140(7), 2465–2478 (2012)

    Article  MATH  Google Scholar 

  20. Rosenberg, H.: Constant mean curvature surfaces in homogeneously regular 3-manifolds. Bull. Aust. Math. Soc. 74, 227–238 (2006)

    Article  MATH  Google Scholar 

  21. Sa Earp, R.: Parabolic and hyperbolic screw motion surfaces in \(\mathbb{H} ^{2}\times\mathbb{R}\). Bull. Aust. Math. Soc. 85, 113–143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Younes, R.: Minimal surfaces in \(\widetilde{\mathrm{PSL}_{2}}(\mathbb{R})\). Ill. J. Math. 54(2), 671–712 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Manzano.

Additional information

Research partially supported by the MCyT-Feder research project MTM2011-22547, the Regional J. Andalucía Grant no. P09-FQM-5088 and the CEI BioTIC GENIL project (CEB09-0010) no. PYR-2010-21.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzano, J.M., Rodríguez, M.M. On Complete Constant Mean Curvature Vertical Multigraphs in \(\mathbb{E}(\kappa,\tau)\) . J Geom Anal 25, 336–346 (2015). https://doi.org/10.1007/s12220-013-9431-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-013-9431-8

Keywords

Mathematics Subject Classification (2010)

Navigation