Skip to main content
Log in

L p-L q Estimates for Bergman Projections in Bounded Symmetric Domains of Tube Type

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let D be an irreducible bounded symmetric domain of tube type in ℂn. The class of Bloch functions is well known in this context, in connection with Hankel operators or duality of Bergman spaces. Contrary to what happens in the unit ball, Bloch functions do not belong to all Lebesgue spaces L p(D) for p<∞ in higher rank. We give here both necessary and sufficient conditions on p for such an embedding. This question is equivalent to local boundedness properties of the Bergman projection in the tube domain over a symmetric cone that is conformally equivalent to D. We are linked to consider L L q inequalities on symmetric cones, which may be of independent interest, and study more systematically estimates with loss for the Bergman projection. The proofs are based on a very precise estimate on an integral related to the Gamma function of a symmetric cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This formula is not explicit in [10], but is easily derived from the identity \({\Delta }(\Im \!\mbox {\small {$m$}}\,\varPhi(w) )= |{\Delta }(\mathbf {e}-w)|^{-2}h(w)\) in [10, p. 263] and the fact J Φ (w)=(2i)nΔ(ew)−2n/r in [10, p. 202].

References

  1. Arazy, J.: Boundedness and compactness of generalized Hankel operators on bounded symmetric domains. J. Funct. Anal. 137, 97–151 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aslaksen, H.: Quaternionic determinants. Math. Intell. 18, 57–65 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Békollé, D., Bonami, A.: Estimates for the Bergman and Szegő projections in two symmetric domains of ℂn. Colloq. Math. 68, 81–100 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Békollé, D., Bonami, A., Garrigós, G.: Littlewood-Paley decompositions related to symmetric cones. IMHOTEP 3(1), 11–41 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Békollé, D., Bonami, A., Peloso, M., Ricci, F.: Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z. 237, 31–59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Békollé, D., Bonami, A., Garrigós, G., Nana, C., Peloso, M., Ricci, F.: Lecture notes on Bergman projectors in tube domain over cones: an analytic and geometric viewpoint. IMHOTEP 5, 1–72 (2004). Exposé I

    Google Scholar 

  7. Békollé, D., Bonami, A., Garrigós, G., Ricci, F.: Littlewood-Paley decompositions and Bergman projectors related to symmetric cones. Proc. Lond. Math. Soc. 89(3), 317–360 (2004)

    Article  MATH  Google Scholar 

  8. Békollé, D., Bonami, A., Garrigós, G., Ricci, F., Sehba, B.: Analytic Besov spaces and Hardy-type inequalities in tube domains over cones. J. Reine Angew. Math. 647, 25–56 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Dyson, F.J.: Quaternion determinants. Helv. Phys. Acta 45, 279–302 (1972)

    Google Scholar 

  10. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  11. Garrigós, G.: Möbius invariance of analytic Besov spaces in tube domains over symmetric cones. Colloq. Math. 118(2), 559–568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garrigós, G., Seeger, A.: On plate decompositions of cone multipliers. Proc. Edinb. Math. Soc. 53(3), 631–651 (2009)

    Article  Google Scholar 

  13. Garrigós, G., Schlag, W., Seeger, A.: Improvements on Wolff’s inequality for the cone multiplier. Preprint (2008)

  14. Moore, E.H., Barnard, R.W.: General Analysis, Part I. Memoirs of the American Philosophical Society, Philadelphia (1935)

  15. Nana, C.: L estimates for the Bergman projection in the Lie ball of ℂn. J. Funct. Spaces Appl. 9(2), 109–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhu, K.: Holomorphic Besov spaces on bounded symmetric domains. II. Indiana Univ. Math. J. 44, 1017–1031 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Garrigós.

Additional information

Communicated by Der-Chen Chang.

Second author supported by grant MTM2007-60952 and MTM2010-16518, Spain.

Appendix

Appendix

1.1 A.1 A Remark on Quaternionic Determinants

As pointed out in the proof of Lemma 4.10, the determinant of a matrix of quaternions (for which actually there are various definitions) is in general not multilinear; see, e.g., [2, 9]. Thus, we briefly explain here what definition must be used in order to justify (4.15) in the case V=Her(r,ℍ).

A matrix of quaternions \(A=(a_{ij})_{i,j=1}^{n}\in M_{n\times n}(\mathbb {H})\) is called almost-Hermitian if there exists (at most) one index k∈{1,…,n} so that

$$a_{ij}=\bar{a}_{ji},\quad\forall i,j\in\{1,\ldots,n\} \setminus\{k\}. $$

For such matrices the Moore determinant is defined by

$$\mbox{Mdet}(A) = \sum_{\ell=1}^n \varepsilon _{k\ell}a_{k\ell}\mbox{Mdet}\bigl(A[k,\ell]\bigr), $$

where k is the index in the definition of almost-Hermitian, A[k,] is the matrix obtained from A by first interchanging the -th and k-th columns, and then deleting both the k-th row and k-th column, and ε kℓ =−1 if \(\ell\not=k\) and ε kk =1. We refer to [9, 14] for the consistency of this definition and various properties of such determinants. It is easy to verify from the definition that, if A,B,C are almost-Hermitian matrices with the same index k, and satisfying the linear relation

$$c_{kj}=a_{kj}+b_{kj}\quad\forall j,{\quad \mbox {and}\quad }c_{ij}=a_{ij}=b_{ij}\quad\forall i\not=k,\ \forall j, $$

then

$$\mbox{Mdet}(C)=\mbox{Mdet}(A)+\mbox{Mdet}(B) $$

(see, e.g., [9, Theorem 2]). Using this property and the definition of Mdet, it is straightforward to justify the analogue of (4.15) for quaternionic matrices, i.e.,

$$\mbox{Mdet} \bigl(\mathbf {s}+\bigl(\mathbf {v}^2\bigr)' \bigr) = s_1\cdots s_{r-1}+\sum_{j=1}^{r-1} s_1\cdots|v_j|^2\cdots s_{r-1}, $$

when s j >0 and v j ∈ℍ.

Finally, we remark that the Jordan algebra determinant Δ(x) of x∈Her(r,ℍ) (defined as the independent coefficient of the minimal polynomial of x; see [10, Chap. II]) coincides with the Moore determinant Mdet(x) defined above. This follows, for instance, from the formulation of each of these determinants as Pfaffians of matrices in Skew(2r,ℂ) (see [10, p. 40] and [9, (4.7)]).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonami, A., Garrigós, G. & Nana, C. L p-L q Estimates for Bergman Projections in Bounded Symmetric Domains of Tube Type. J Geom Anal 24, 1737–1769 (2014). https://doi.org/10.1007/s12220-013-9393-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-013-9393-x

Keywords

Mathematics Subject Classification (2010)

Navigation