Skip to main content
Log in

Remarks on the Extension of the Ricci Flow

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We present two new conditions to extend the Ricci flow on a compact manifold over a finite time, which are improvements of some known extension theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    MATH  MathSciNet  Google Scholar 

  2. Chow, B., Knopf, D.: The Ricci Flow: an Introduction. Mathematical Surveys and Monographs, vol. 110. Am. Math. Soc., Providence (2004)

    Book  Google Scholar 

  3. Chow, B., et al.: The Ricci Flow: Techniques and Applications. Part I. Geometric Aspects. Mathematical Surveys and Monographs, vol. 135. Am. Math. Soc., Providence (2007)

    Google Scholar 

  4. Enders, J., Müller, R., Topping, P.M.: On type I singularities in Ricci flow. arXiv:1005.1624v1 [math.DG]

  5. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MATH  Google Scholar 

  6. Hamilton, R.S.: The Formation of Singularities in the Ricci flow, Surveys in Differential Geometry. Vol. II, pp. 7–136. International Press, Cambridge (1995)

    Google Scholar 

  7. Hamilton, R.S.: A compactness property for solutions of the Ricci flow. Am. J. Math. 117, 545572 (1995)

    Google Scholar 

  8. Hebey, E.: Nonlinear Analysis on manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York University Courant Institute of Mathematical Sciences, New York (1999)

    Google Scholar 

  9. Hebey, E., Vaugon, M.: Meilleures constantes dans le theoreme d’inclusion de Sobolev. C. R. Acad. Sci., Ser. 1 Math. 318, 675–677 (1994)

    MATH  MathSciNet  Google Scholar 

  10. Hebey, E., Vaugon, M.: The best constant problem in the Sobolev embedding. Duke Math. J. 79(1), 235–279 (1995). doi:10.1215/S0012-7094-95-07906-X

    Article  MATH  MathSciNet  Google Scholar 

  11. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Le, N.Q.: Blow up of subcritical quantities at the first singular time of the mean curvature flow (2010). arXiv:1002.4669v2

  13. Ledoux, M.: On manifolds with non-negative Ricci curvature and Sobolev inequalities. Commun. Anal. Geom. 7, 347–353 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Ma, L., Cheng, L.: On the conditions to control curvature tensors of Ricci flow. Ann. Glob. Anal. Geom. 37(4), 403–411 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). arXiv:math/0211159v1 [math.DG]

  16. Sesum, N.: Curvature tensor under the Ricci flow. Am. J. Math. 127(6), 1315–1324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Le, N.Q., Sesum, N.: On the extension of the mean curvature flow. Math. Z. 267(3–4), 583–604 (2011). doi:10.1007/s00209-009-0637-1

    Article  MATH  MathSciNet  Google Scholar 

  18. Le, N.Q., Sesum, N.: The mean curvature at the first singular time of the mean curvature flow (2010). arXiv:1001.3682v1 [math.DG]

  19. Le, N.Q., Sesum, N.: Remarks on curvature behavior at the first singular time of the Ricci flow (2010). arXiv:1005.1220v2 [math.DG]

  20. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, B.: On the conditions to extend Ricci flow (2007). arXiv:0704.3018v2

  22. Wang, B.: On the conditions to extend Ricci flow (II) (2011). arXiv:1107.5107v1

  23. Ye, R.: Curvature estimates for the Ricci flow. II. Calc. Var. Partial Differ. Equ. 31(4), 439–455 (2008)

    Article  MATH  Google Scholar 

  24. Xu, H.W., Ye, F., Zhao, E.T.: Extend mean curvature flow with finite integral curvature (2009). arXiv:0905.1167v1

  25. Zhang, Z.: Scalar curvature behavior for finite-time singularity of Kähler-Ricci flow. Mich. Math. J. 59(2), 419C433 (2010)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank his advisor Peter Li for his advising, encouragement, and generous support. The author would also like to thank Jeffrey Streets for many useful suggestions and all his help in preparing this paper, and Guoyi Xu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei He.

Additional information

Communicated by Jiaping Wang.

This research was partially supported by NSF grant DMS-0801988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, F. Remarks on the Extension of the Ricci Flow. J Geom Anal 24, 81–91 (2014). https://doi.org/10.1007/s12220-012-9327-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-012-9327-z

Keywords

Mathematics Subject Classification

Navigation