Skip to main content
Log in

Differentiability of Intrinsic Lipschitz Functions within Heisenberg Groups

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the notion of intrinsic Lipschitz graphs within Heisenberg groups, focusing our attention on their Hausdorff dimension and on the almost everywhere existence of (geometrically defined) tangent subgroups. In particular, a Rademacher type theorem enables us to prove that previous definitions of rectifiable sets in Heisenberg groups are natural ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318, 527–555 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185, 1–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, London (2000)

    MATH  Google Scholar 

  4. Arena, G., Serapioni, R.: Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs. Calc. Var. Partial. Differ. Equ. 35(4), 517–536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bigolin, F., Vittone, D.: Some remarks about parametrizations of intrinsic regular surfaces in the Heisenberg group. Publ. Mat. 54(1), 159–172 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  7. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheeger, J., Kleiner, B.: Generalized differential and bi-Lipschitz nonembedding in L 1. C. R. Math. Acad. Sci. Paris 343(5), 297–301 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Kleiner, B.: Differentiating maps into L 1 and the geometry of BV functions. Ann. Math. 171(2), 1347–1385 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Citti, G., Manfredini, M.: Blow-up in non-homogeneous Lie groups and rectifiability. Houst. J. Math. 31(2), 333–353 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Citti, G., Manfredini, M.: Implicit function theorem in Carnot–Carathéodory spaces. Commun. Contemp. Math. 8(5), 657–680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)

    Article  MathSciNet  Google Scholar 

  13. Cole, D., Pauls, S.D.: C 1 hypersurfaces of the Heisenberg group are N-rectifiable. Houst. J. Math. 32(3), 307–326 (2006)

    MathSciNet  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  15. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  16. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)

    MATH  Google Scholar 

  17. Franchi, B., Serapioni, R., Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321, 479–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Franchi, B., Serapioni, R., Serra Cassano, F.: Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups. Commun. Anal. Geom. 11(5), 909–944 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Franchi, B., Serapioni, R., Serra Cassano, F.: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13(3), 421–466 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Franchi, B., Serapioni, R., Serra Cassano, F.: Intrinsic Lipschitz graphs in Heisenberg groups. J. Nonlinear Convex Anal. 7(3), 423–441 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Franchi, B., Serapioni, R., Serra Cassano, F.: Regular submanifolds, graphs and area formula in Heisenberg groups. Adv. Math. 211(1), 152–203 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gromov, M.: Carnot–Carathéodory spaces seen from within. In: Bellaïche, A., Risler, J. (eds.) Subriemannian Geometry. Progress in Mathematics, vol. 144. Birkhäuser, Basel (1996)

    Google Scholar 

  24. Heinonen, J.: Lectures on Lipschitz analysis. Report, University of Jyväskylä, Department of Mathematics and Statistics, 100. Jyväskylä (2005)

  25. Heinonen, J.: Nonsmooth calculus. Bull. Am. Math. Soc. 44, 163–232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Korányi, A., Reimann, H.M.: Foundation for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111, 1–87 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lloyd, N.G.: Degree Theory. Cambridge Tracts in Mathematics, vol. 73. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  28. Magnani, V.: Elements of Geometric Measure Theory on Sub-Riemannian Groups. Tesi di Perfezionamento. Scuola Normale Superiore, Pisa (2003)

    Google Scholar 

  29. Magnani, V.: Towards differential calculus in stratified groups. Preprint (2007)

  30. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  31. Mattila, P., Serapioni, R., Serra Cassano, F.: Characterizations of intrinsic rectifiability in Heisenberg groups. Ann. Scuola Norm. Super. Pisa (to appear)

  32. Mitchell, J.: On Carnot–Carathéodory metrics. J. Differ. Geom. 21, 35–45 (1985)

    MATH  Google Scholar 

  33. Pansu, P.: Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129, 1–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pauls, S.D.: A notion of rectifiability modeled on Carnot groups. Indiana Univ. Math. J. 53(1), 49–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Semmes, S.: On the non existence of biLipschitz parametrization and geometric problems about A weights. Rev. Mat. Iberoam. 12, 337–410 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  37. Varopoulos, N.Th., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge University Press, Cambridge (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Franchi.

Additional information

Communicated by Vern Paulsen.

B. Franchi is supported by MURST, Italy and by University of Bologna, Italy, funds for selected research topics.

R. Serapioni is supported by MURST, Italy and University of Trento, Italy.

F. Serra Cassano is supported by MURST, Italy and University of Trento, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franchi, B., Serapioni, R. & Serra Cassano, F. Differentiability of Intrinsic Lipschitz Functions within Heisenberg Groups. J Geom Anal 21, 1044–1084 (2011). https://doi.org/10.1007/s12220-010-9178-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9178-4

Keywords

Mathematics Subject Classification (2000)

Navigation