Skip to main content
Log in

Scattering Rigidity for Analytic Riemannian Manifolds with a Possible Magnetic Field

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Consider a compact manifold M with boundary M endowed with a Riemannian metric g and a magnetic field Ω. Given a point and direction of entry at the boundary, the scattering relation Σ determines the point and direction of exit of a particle of unit charge, mass, and energy. In this paper we show that a magnetic system (M, M,g,Ω) that is known to be real-analytic and that satisfies some mild restrictions on conjugate points is uniquely determined up to a natural equivalence by Σ. In the case that the magnetic field Ω is taken to be zero, this gives a new rigidity result in Riemannian geometry that is more general than related results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D.V., Sinai, Y.G.: Certain smooth ergodic systems. Russ. Math. Surv. 22(5), 103–167 (1967)

    Article  MathSciNet  Google Scholar 

  2. Arnold, V.I.: Some remarks on flows of line elements and frames. Sov. Math. Dokl. 2, 562–564 (1961)

    Google Scholar 

  3. Arnold, V.I.: On some problems in symplectic topology. In: Viro, O.Y. (ed.) Topology and Geometry Rochlin Seminar. Lect. Notes in Math., vol. 1346 Springer, Berlin (1988)

    Google Scholar 

  4. Burago, D., Ivanov, S.: Boundary rigidity and filling volume minimality of metrics close to a flat one. Preprint (2005)

  5. Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictment négative. Geom. Funct. Anal. 5, 731–799 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Contreras, G., Macarini, L., Paternain, G.P.: Periodic orbits for exact magnetic flows on surfaces. Int. Math. Res. Not. 8, 361–387 (2004)

    Article  MathSciNet  Google Scholar 

  7. Croke, C.: Rigidity and the distance between boundary points. J. Differ. Geom. 33(2), 445–464 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Croke, C.: Boundary and lens rigidity of finite quotients. Proc. Am. Math. Soc. 133(12), 3663–3668 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Croke, C., Kleiner, B.: Conjugacy and rigidity for manifolds with a parallel vector field. J. Differ. Geom. 39, 659–680 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Dairbekov, N., Paternain, G., Stefanov, P., Uhlmann, G.: The boundary rigidity problem in the presence of a magnetic field. Adv. Math. 216(2), 535–609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ginzburg, V.L.: On closed trajectories of a charge in a magnetic field. An application of symplectic geometry. In: Thomas, C.B. (ed.) Contact and Symplectic Geometry, Cambridge, 1994. Publ. Newton Inst., vol. 8, pp. 131–148. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  12. Grognet, S.: Flots magnétiques en courbure négative. Ergod. Theory Dyn. Syst. 19(2), 413–436 (1999) (in French)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–148 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Herreros, P.: Scattering boundary rigidity in the presence of a magnetic field. Preprint. arXiv:1004.2486

  15. Levi, M.: On a problem by Arnold on periodic motions in magnetic fields. Commun. Pure Appl. Math. 56(8), 1165–1177 (2003)

    Article  MATH  Google Scholar 

  16. Michel, R.: Sur la rigidité imposée par la longueur des géodésiques. Invent. Math. 65, 71–83 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mukhometov, R.G.: A problem of reconstructing a Riemannian metric. Sib. Math. J. 22(3), 119–135 (1981) (in Russian)

    MathSciNet  Google Scholar 

  18. Novikov, S.P., Taimanov, I.A.: Periodic extremals of many-valued or not everywhere positive functionals. Sov. Math. Dokl. 29(1), 18–20 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Paternain, G.P., Paternain, M.: First derivative of topological entropy for Anosov geodesic flows in the presence of magnetic fields. Nonlinearity 10, 121–131 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pestov, L., Uhlmann, G.: Two dimensional simple compact manifolds with boundary are boundary rigid. Ann. Math. 161(2), 1089–1106 (2005)

    Article  MathSciNet  Google Scholar 

  21. Schneider, M.: Closed magnetic geodesics on S2. Preprint, arXiv:0808.4038 [math.DG] (2008)

  22. Stefanov, P., Uhlmann, G.: Rigidity for metrics with the same lengths of geodesics. Math. Res. Lett. 5, 83–96 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Stefanov, P., Uhlmann, G.: Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom. 82, 383–409 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Vargo, J.: A proof of lens rigidity in the category of analytic metrics. Math. Res. Lett. (to appear)

  25. Wiechert, E., Zoeppritz, K.: Über Erdbebenwellen. Nachr. Koenigl. Gesellschaft Wiss., Goettingen 4, 415–549 (1907)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Vargo.

Additional information

Communicated by Michael Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herreros, P., Vargo, J. Scattering Rigidity for Analytic Riemannian Manifolds with a Possible Magnetic Field. J Geom Anal 21, 641–664 (2011). https://doi.org/10.1007/s12220-010-9162-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9162-z

Keywords

Mathematics Subject Classification (2000)

Navigation