Abstract
We compute global log canonical thresholds of a large class of quasismooth well-formed del Pezzo weighted hypersurfaces in ℙ(a 0,a 1,a 2,a 3). As a corollary we obtain the existence of orbifold Kähler-Einstein metrics on many of them, and classify exceptional and weakly exceptional quasismooth well-formed del Pezzo weighted hypersurfaces in ℙ(a 0,a 1,a 2,a 3).
This is a preview of subscription content, access via your institution.
References
Araujo, C.: Kähler-Einstein metrics for some quasi-smooth log del Pezzo surfaces. Trans. Am. Math. Soc. 354, 4303–3312 (2002)
Boyer, C., Galicki, K., Nakamaye, M.: On the geometry of Sasakian-Einstein 5-manifolds. Math. Ann. 325, 485–524 (2003)
Cheltsov, I.: Fano varieties with many selfmaps. Adv. Math. 217, 97–124 (2008)
Cheltsov, I.: Log canonical thresholds of del Pezzo surfaces. Geom. Funct. Anal. 18, 1118–1144 (2008)
Cheltsov, I., Shramov, C.: Log canonical thresholds of smooth Fano threefolds. With an appendix by Jean-Pierre Demailly. Russ. Math. Surv. 63, 73–180 (2008)
Cheltsov, I., Shramov, C.: Del Pezzo zoo. arXiv:0904.0114 (2009)
Cheltsov, I., Shramov, C., Park, J.: Exceptional del Pezzo hypersurfaces (extended version). arXiv:math.AG/0810.1804
Demailly, J.-P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Supér. 34, 525–556 (2001)
Futaki, A.: An obstruction to the existence of Einstein–Kähler metrics. Invent. Math. 73, 437–443 (1983)
Gauntlett, J., Martelli, D., Sparks, J., Yau, S.-T.: Obstructions to the existence of Sasaki-Einstein metrics. Commun. Math. Phys. 273, 803–827 (2007)
Iano-Fletcher, A.R.: Working with weighted complete intersections. In: L.M.S. Lecture Note Series, vol. 281, pp. 101–173. Springer, Berlin (2000)
Johnson, J., Kollár, J.: Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces. Ann. Inst. Fourier 51, 69–79 (2001)
Kollár, J.: Singularities of pairs. Proc. Symp. Pure Math. 62, 221–287 (1997)
Keel, S., McKernan, J.: Rational curves on quasi-projective surfaces. Mem. Am. Math. Soc. 669 (1999)
Kudryavtsev, S.: Classification of three-dimensional exceptional log-canonical hypersurface singularities. I. Izv., Math. 66, 949–1034 (2002)
Kuwata, T.: On log canonical thresholds of reducible plane curves. Am. J. Math. 121, 701–721 (1999)
Markushevich, D., Prokhorov, Yu.: Exceptional quotient singularities. Am. J. Math. 121, 1179–1189 (1999)
Nadel, A.: Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature. Ann. Math. 132, 549–596 (1990)
Prokhorov, Yu.: Lectures on complements on log surfaces. MSJ Mem. 10 (2001)
Rubinstein, Y.: Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics. Adv. Math. 218, 1526–1565 (2008)
Shokurov, V.: Complements on surfaces. J. Math. Sci. 102, 3876–3932 (2000)
Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds with c 1(M)>0. Invent. Math. 89, 225–246 (1987)
Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)
Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32, 99–130 (1990)
Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)
Yau, S.S.-T., Yu, Y.: Classification of 3-dimensional isolated rational hypersurface singularities with ℂ*-action. arXiv:math/0303302 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Steven Krantz.
All varieties are assumed to be complex, projective, and normal unless otherwise stated.
Rights and permissions
About this article
Cite this article
Cheltsov, I., Park, J. & Shramov, C. Exceptional del Pezzo Hypersurfaces. J Geom Anal 20, 787–816 (2010). https://doi.org/10.1007/s12220-010-9135-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12220-010-9135-2
Keywords
- Global log canonical threshold
- Alpha-invariant of Tian
- Del Pezzo orbifold
- Weighted hypersurface
- Kähler–Einstein metric
- Exceptional Fano variety
- Weakly exceptional Fano variety
- Exceptional singularity
- Weakly exceptional singularity
Mathematics Subject Classification (2000)
- 14J45
- 32Q20
- 14J70
- 14Q10
- 32S25