Skip to main content
Log in

The Carnot-Carathéodory Distance and the Infinite Laplacian

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In ℝn equipped with the Euclidean metric, the distance from the origin is smooth and infinite harmonic everywhere except the origin. Using geodesics, we find a geometric characterization for when the distance from the origin in an arbitrary Carnot-Carathéodory space is a viscosity infinite harmonic function at a point outside the origin. We show that at points in the Heisenberg group and Grushin plane where this condition fails, the distance from the origin is not a viscosity infinite harmonic subsolution. In addition, the distance function is not a viscosity infinite harmonic supersolution at the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beatrous, F., Bieske, T., Manfredi, J.: The maximum principle for vector fields. In: The p-Harmonic Equation and Recent Advances in Analysis. Contemp. Math., vol. 370, pp. 1–9. Am. Math. Soc., Providence (2005)

    Google Scholar 

  2. Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Bellaïche, A., Risler, J.-J. (eds.) Sub-Riemannian Geometry. Progress in Mathematics, vol. 144, pp. 1–78. Birkhäuser, Basel (1996)

    Google Scholar 

  3. Bieske, T.: On ∞-harmonic functions on the Heisenberg group. Commun. PDE 27(3&4), 727–761 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bieske, T.: Lipschitz extensions on generalized Grushin spaces. Mich. Math. J. 53(1), 3–31 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bieske, T.: Properties of infinite harmonic functions on Grushin-type spaces. Rocky Mt. J. Math. 39(3), 729–756 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bieske, T.: Properties of infinite harmonic functions in Riemannian vector fields. Le Matematiche LXIII(2), 19–37 (2008)

    MathSciNet  Google Scholar 

  7. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  8. Champion, T., De Pascale, L.: A principle of comparison with distance functions for absolute minimizers. J. Convex Anal. 14(3), 515–541 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ Equ. 13(2), 123–139 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Dragoni, F.: Metric Hopf-Lax formula with semicontinuous data. Discrete Contin. Dyn. Syst. 17(4), 713–729 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heinonen, J.: Calculus on Carnot groups. In: Fall School in Analysis, Jyväskylä, 1994, pp. 1–31. Univ. Jyväskylä, Jyväskylä (1995). Report No. 68

    Google Scholar 

  12. Jensen, R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123, 51–74 (1993)

    Article  MATH  Google Scholar 

  13. Lu, G., Manfredi, J., Stroffolini, B.: Convex functions on the Heisenberg group. Calc. Var. Partial Differ Equ. 19(1), 1–22 (2004)

    Article  MathSciNet  Google Scholar 

  14. Monti, R.: Some properties of Carnot-Carathéodory balls in the Heisenberg group. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11(3), 155–167 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Monti, R., Serra Cassano, F.: Surface measures in Carnot-Carathéodory spaces. Calc. Var. Partial Differ Equ. 13, 339–376 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity Laplacian. In: Rend. Semin. Mat. Univ. Politec. Torino 1989, pp. 15–68 (1991). Special issue on topics in nonlinear PDEs

  17. Wang, C.: The Aronsson equation for absolute minimizers of L -functionals associated with vector fields satisfying Hörmander’s condition. Trans. Am. Math. Soc. 359, 91–113 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manfredi.

Additional information

Communicated by Jiaping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieske, T., Dragoni, F. & Manfredi, J. The Carnot-Carathéodory Distance and the Infinite Laplacian. J Geom Anal 19, 737–754 (2009). https://doi.org/10.1007/s12220-009-9087-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-009-9087-6

Keywords

Mathematics Subject Classification (2000)

Navigation