Advertisement

Journal of Geometric Analysis

, Volume 19, Issue 1, pp 107–136 | Cite as

Constant Scalar Curvature Kähler Surfaces and Parabolic Polystability

  • Yann RollinEmail author
  • Michael Singer
Article

Abstract

A complex ruled surface admits an iterated blow-up encoded by a parabolic structure with rational weights. Under a condition of parabolic stability, one can construct a Kähler metric of constant scalar curvature on the blow-up according to Rollin and Singer (J. Eur. Math. Soc., 2004). We present a generalization of this construction to the case of parabolically polystable ruled surfaces. Thus, we can produce numerous examples of Kähler surfaces of constant scalar curvature with circle or toric symmetry.

Keywords

Kähler Constant scalar curvature Ruled surfaces Stability 

Mathematics Subject Classification (2000)

53C25 32Q20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostolov, V., Tønnesen-Friedman, C.W.: A remark on Kähler metrics of constant scalar curvature on ruled complex surfaces (2004). arXiv:math.DG/0411271
  2. 2.
    Arezzo, C., Pacard, F.: Blowing up and desingularizing constant scalar curvature Kähler manifolds. arXiv:math.DG/0411522
  3. 3.
    Arezzo, C., Pacard, F.: Blowing up and desingularizing constant scalar curvature Kähler manifolds II. math.DG/0504115
  4. 4.
    Biquard, O.: Métriques kählériennes à courbure scalaire constante: unicité, stabilité. Astérisque 938, 2–30 (2004). Séminaire Bourbaki, vol. 2004/2005 Google Scholar
  5. 5.
    Burns, D., De Bartolomeis, P.: Stability of vector bundles and extremal metrics. Invent. Math. 92(2), 403–407 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Calderbank, D.M.J., Singer, M.A.: Einstein metrics and complex singularities. Invent. Math. 156(2), 405–443 (2004). math.DG/0206229 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Donaldson, S.K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59(3), 479–522 (2001) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Herzlich, M.: Théorèmes de masse positive. In: Séminaire de Théorie Spectrale et Géométrie. Sémin. Théor. Spectr. Géom., vol. 16, pp. 107–126. Univ. Grenoble I, Saint, 1997 Google Scholar
  9. 9.
    Joyce, D.D.: Explicit construction of self-dual 4-manifolds. Duke Math. J. 77(3), 519–552 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000) zbMATHGoogle Scholar
  11. 11.
    Kim, J., LeBrun, C., Pontecorvo, M.: Scalar-flat Kähler surfaces of all genera. J. Reine Angew. Math. 486, 69–95 (1997). dg-ga/9409002 zbMATHMathSciNetGoogle Scholar
  12. 12.
    LeBrun, C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118(4), 591–596 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    LeBrun, C.: Scalar-flat Kähler metrics on blown-up ruled surfaces. J. Reine Angew. Math. 420, 161–177 (1991) zbMATHMathSciNetGoogle Scholar
  14. 14.
    LeBrun, C.: Polarized 4-manifolds, extremal Kähler metrics, and Seiberg-Witten theory. Math. Res. Lett. 2(5), 653–662 (1995) zbMATHMathSciNetGoogle Scholar
  15. 15.
    LeBrun, C., Simanca, S.R.: Extremal Kähler metrics and complex deformation theory. Geom. Funct. Anal. 4(3), 298–336 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    LeBrun, C., Singer, M.: Existence and deformation theory for scalar-flat Kähler metrics on compact complex surfaces. Invent. Math. 112(2), 273–313 (1993). alg-geom/9302006 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Mehta, V.B., Seshadri, C.S.: Moduli of vector bundles on curves with parabolic structures. Math. Ann. 248(3), 205–239 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rollin, Y., Singer, M.: Construction of Kähler surfaces with constant scalar curvature. J. Eur. Math. Soc. (2004, to appear). math.DG/0412405
  19. 19.
    Rollin, Y., Singer, M.: Non-minimal scalar-flat Kähler surfaces and parabolic stability. Invent. Math. 162(2), 235–270 (2005). math.DG/0404423 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Stoppa, J.: Unstable blowups (2007). math/0702154
  21. 21.
    Thomas, R.P.: Notes on git and symplectic reduction for bundles and varieties. Surv. Differ. Geom. 10 (2006). math/0512411
  22. 22.
    Yau, S.T.: On the curvature of compact Hermitian manifolds. Invent. Math. 25, 213–239 (1974) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2008

Authors and Affiliations

  1. 1.Imperial CollegeLondonUK
  2. 2.University of EdinburghEdinburghUK

Personalised recommendations