Journal of Geometric Analysis

, Volume 19, Issue 1, pp 36–80 | Cite as

Neck Pinching Dynamics under Mean Curvature Flow

  • Zhou Gang
  • Israel Michael SigalEmail author


In this paper we study motion of surfaces of revolution under the mean curvature flow. For an open set of initial conditions close to cylindrical surfaces we show that the solution forms a “neck” which pinches in a finite time at a single point. We also obtain a detailed description of the neck pinching process.


Mean curvature flow Geometric flows Neckpinching Singularities formation Blowup Nonlinear PDEs 

Mathematics Subject Classification (2000)

35K55 35K57 53C44 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alikakos, N.D., Freire, A.: The normalized mean curvature flow for a small bubble in a Riemannian manifold. J. Differ. Geom. 64(2), 247–303 (2003) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Altschuler, S., Angenent, S.B., Giga, Y.: Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal. 5(3), 293–358 (1995) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Angenent, S., Knopf, D.: Precise asymptotics of the Ricci flow neckpinch. arXiv:math.DG/0511247v1
  4. 4.
    Angenent, S., Knopf, D.: An example of neckpinching for Ricci flow on S n+1. Math. Res. Lett. 11(4), 493–518 (2004) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Angenent, S.B., Velázquez, J.J.L.: Degenerate neckpinches in mean curvature flow. J. Reine Angew. Math. 482, 15–66 (1997) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Athanassenas, M.: Volume-preserving mean curvature flow of rotationally symmetric surfaces. Comment. Math. Helv. 72(1), 52–66 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Athanassenas, M.: Behaviour of singularities of the rotationally symmetric, volume-preserving mean curvature flow. Calc. Var. Partial Differ. Equ. 17(1), 1–16 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brakke, K.A.: The Motion of a Surface by Its Mean Curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978) zbMATHGoogle Scholar
  9. 9.
    Bricmont, J., Kupiainen, A.: Universality in blow-up for nonlinear heat equations. Nonlinearity 7(2), 539–575 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Dejak, S., Gang, Z., Sigal, I.M., Wang, S.: Blowup of nonlinear heat equations. Adv. Appl. Math. 40, 433–481 (2008) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Dziuk, G., Kawohl, B.: On rotationally symmetric mean curvature flow. J. Differ. Equ. 93(1), 142–149 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ecker, K.: Local techniques for mean curvature flow. In: Workshop on Theoretical and Numerical Aspects of Geometric Variational Problems, Canberra, 1990. Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 26, pp. 107–119. Austral. Nat. Univ., Canberra (1991) Google Scholar
  14. 14.
    Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. J. Differ. Geom. 33(3), 635–681 (1991) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Gang, Z.: The quenching problem of nonlinear heat equations. arXiv:math.AP/0612110
  17. 17.
    Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Grayson, M.A.: A short note on the evolution of a surface by its mean curvature. Duke Math. J. 58(3), 555–558 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984) zbMATHMathSciNetGoogle Scholar
  21. 21.
    Huisken, G.: Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math. 84(3), 463–480 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature. In: Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, CA, 1990. Proc. Sympos. Pure Math., vol. 54, pp. 175–191. Amer. Math. Soc., Providence (1993) Google Scholar
  24. 24.
    Huisken, G.: Lecture two: singularities of the mean curvature flow. In: Tsing Hua Lectures on Geometry & Analysis, Hsinchu, 1990–1991, pp. 125–130. Int. Press, Cambridge (1997) Google Scholar
  25. 25.
    Huisken, G., Sinestrari, C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differ. Equ. 8(1), 1–14 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ilmanen, T.: Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J. 41(3), 671–705 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ladyženskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23 American Mathematical Society, Providence (1967). Translated from the Russian by S. Smith Google Scholar
  28. 28.
    Simon, M.: Mean curvature flow of rotationally symmetric hypersurfaces. Thesis (1990) Google Scholar
  29. 29.
    Smoczyk, K.: The evolution of special hypersurfaces by their mean curvature. Preprint, Ruhr-University Bochum (1993) Google Scholar
  30. 30.
    Soner, H.M., Souganidis, P.E.: Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Commun. Partial Differ. Equ. 18(5–6), 859–894 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wang, M.-T.: Mean curvature flow in higher codimension. arXiv:math/0204054v1 (2002)

Copyright information

© Mathematica Josephina, Inc. 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations