Journal of Geometric Analysis

, Volume 19, Issue 1, pp 19–35 | Cite as

Minimally Supported Frequency Composite Dilation Parseval Frame Wavelets

  • Jeffrey D. BlanchardEmail author


A composite dilation Parseval frame wavelet is a collection of functions generating a Parseval frame for L 2(ℝ n ) under the actions of translations from a full rank lattice and dilations by products of elements of groups A and B. A minimally supported frequency composite dilation Parseval frame wavelet has generating functions whose Fourier transforms are characteristic functions of sets contained in a lattice tiling set. Constructive proofs are used to establish the existence of minimally supported frequency composite dilation Parseval frame wavelets in arbitrary dimension using any finite group B, any full rank lattice, and an expanding matrix generating the group A and normalizing the group B. Moreover, every such system is derived from a Parseval frame multiresolution analysis. Multiple examples are provided including examples that capture directional information.


Affine systems Composite dilation wavelets Coxeter groups Minimally supported frequency Parseval frames Wavelet frames Wavelet sets Wavelets 

Mathematics Subject Classification (2000)

42C15 42C40 20F55 51F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baggett, L.W., Medina, H.A., Merrill, K.D.: Generalized multi-resolution analyses and a construction procedure for all wavelet sets in \(\bold R\sp n\) . J. Fourier Anal. Appl. 5(6), 563–573 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blanchard, J.D.: Minimally supported frequency composite dilation wavelets. J. Fourier Anal. Appl. (2008, to appear). Online [Available]
  3. 3.
    Bownik, M., Speegle, D.: Meyer type wavelet bases in \({\Bbb{R}}\sp2\) . J. Approx. Theory 116(1), 49–75 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Candès, E., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357(1760), 2495–2509 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Candès, E., Donoho, D.L.: Curvelets and curvilinear integrals. J. Approx. Theory 113(1), 59–90 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2003) zbMATHGoogle Scholar
  7. 7.
    Coxeter, H.S.M.: Regular Polytopes, 2nd edn. Macmillan Co., London (1963) zbMATHGoogle Scholar
  8. 8.
    Coxeter, H.S.M.: Regular Complex Polytopes. Cambridge University Press, Cambridge (1974) zbMATHGoogle Scholar
  9. 9.
    Dai, X., Diao, Y., Gu, Q.: Frame wavelets with frame set support in the frequency domain. Ill. J. Math. 48(2), 539–558 (2004) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Dai, X., Diao, Y., Gu, Q., Han, D.: Frame wavelet sets in ℝd. J. Comput. Appl. Math. 155(1), 69–82 (2003). Approximation theory, wavelets and numerical analysis (Chattanooga, TN, 2001) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dai, X., Larson, D.R., Speegle, D.M.: Wavelet sets in ℝn. J. Fourier Anal. Appl. 3(4), 451–456 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Do, M.N., Vetterli, M.: Contourlets. In: Beyond Wavelets. Stud. Comput. Math., vol. 10, pp. 83–105. Academic Press/Elsevier, San Diego (2003) CrossRefGoogle Scholar
  13. 13.
    Geronimo, J.S., Hardin, D.P., Massopust, P.R.: An application of Coxeter groups to the construction of wavelet bases in R n. In: Fourier Analysis, Orono, ME, 1992. Lecture Notes in Pure and Appl. Math., vol. 157, pp. 187–196. Dekker, New York (1994) Google Scholar
  14. 14.
    Grove, L.C., Benson, C.T.: Finite reflection groups, 2nd edn. Graduate Texts in Mathematics, vol. 99. Springer, New York (1985) zbMATHGoogle Scholar
  15. 15.
    Guo, K., Kutyniok, G., Labate, D.: Sparse multidimensional representations using anisotropic dilation and shear operators. In: Wavelets and Splines: Athens, 2005. Mod. Methods Math., pp. 189–201. Nashboro, Brentwood (2006) Google Scholar
  16. 16.
    Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.N.: Wavelets with composite dilations. Electron. Res. Announc. Am. Math. Soc. 10, 78–87 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.N.: The theory of wavelets with composite dilations. In: Harmonic Analysis and Applications. Appl. Numer. Harmon. Anal., pp. 231–250. Birkhäuser, Boston (2006) CrossRefGoogle Scholar
  18. 18.
    Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.N.: Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20(2), 202–236 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hardin, D.P., Kessler, B., Massopust, P.R.: Multiresolution analyses based on fractal functions. J. Approx. Theory 71(1), 104–120 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hernández, E., Weiss, G.: A first Course on Wavelets. Studies in Advanced Mathematics. CRC, Boca Raton (1996) zbMATHGoogle Scholar
  21. 21.
    Massopust, P.R.: Fractal functions and wavelets: examples of multiscale theory. In: Abstract and Applied Analysis, pp. 225–247. World Sci. Publ., River Edge (2004) Google Scholar
  22. 22.
    Meyer, F.G., Coifman, R.R.: Brushlets: steerable wavelet packets. In: Beyond Wavelets. Stud. Comput. Math., vol. 10, pp. 61–82. Academic Press/Elsevier, San Diego (2003) CrossRefGoogle Scholar
  23. 23.
    Savov, A.: Finite groups associated with composite dilation wavelets. Senior Honors Thesis, Washington University in St. Louis (2005) Google Scholar
  24. 24.
    Weiss, G., Wilson, E.N.: The mathematical theory of wavelets. In: Twentieth Century Harmonic Analysis—A Celebration, Il Ciocco, 2000. NATO Sci. Ser. II Math. Phys. Chem., vol. 33, pp. 329–366. Kluwer Academic, Dordrecht (2001) Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations