Journal of Geometric Analysis

, Volume 19, Issue 1, pp 1–18 | Cite as

Discrete Approximation of Spaces of Homogeneous Type

  • Hugo Aimar
  • Marilina CarenaEmail author
  • Bibiana Iaffei


In this note we combine the dyadic families introduced by M. Christ in (Colloq. Math. 60/61(2):601–628, 1990) and the discrete partitions introduced by J.M. Wu in (Proc. Am. Math. Soc. 126(5):1453–1459, 1998) to get approximation of a compact space of homogeneous type by a uniform sequence of finite spaces of homogeneous type. The convergence holds in the sense of a metric built on the Hausdorff distance between compact sets and on the Kantorovich-Rubinshtein metric between measures.


Quasi-metric space Doubling measure Space of homogeneous type 

Mathematics Subject Classification (2000)

28A33 60B10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Åkerlund-Biström, C.: A generalization of the Hutchinson distance and applications. Random Comput. Dynam. 5(2-3), 159–176 (1997) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ambrosio, L., Miranda, M. Jr., Pallara, D.: Special functions of bounded variation in doubling metric measure spaces. In: Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi. Quad. Mat., vol. 14, pp. 1–45. Seconda Univ. Napoli, Caserta (2004) Google Scholar
  3. 3.
    Assouad, P.: Étude d’une dimension métrique liée à la possibilité de plongements dans R n. C. R. Acad. Sci. Paris Sér. A-B 288(15), A731–A734 (1979) MathSciNetGoogle Scholar
  4. 4.
    Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, Wiley, New York (1999) zbMATHGoogle Scholar
  5. 5.
    Carena, M.: Aproximación y convergencia de espacios de tipo homogéneo. Problemas analíticos y geométricos. Tesis Doctoral, Universidad Nacional del Litoral (2008) Google Scholar
  6. 6.
    Carrillo, M.T., de Guzmán, M.: Maximal convolution operators and approximations. In: Functional Analysis, Holomorphy and Approximation Theory, Rio de Janeiro, 1980. North-Holland Math. Stud., vol. 71, pp. 117–129. North-Holland, Amsterdam (1982) Google Scholar
  7. 7.
    Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61(2), 601–628 (1990) MathSciNetGoogle Scholar
  8. 8.
    Coifman, R.R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes. In: Étude de Certaines Intégrales Singulières. Lecture Notes in Mathematics, vol. 142, Springer, Berlin (1971) Google Scholar
  9. 9.
    de Guzmán, M.: Real Variable Methods in Fourier Analysis. North-Holland Mathematics Studies, vol. 46, North-Holland, Amsterdam (1981) zbMATHGoogle Scholar
  10. 10.
    Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997) zbMATHGoogle Scholar
  11. 11.
    Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer, New York (1969). zbMATHGoogle Scholar
  12. 12.
    Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kravchenko, A.S.: Completeness of the space of separable measures in the Kantorovich-Rubinshteĭn metric. Sibirsk. Mat. Zh. 47(1), 85–96 (2006) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Macías, R.A., Segovia, C.: A decomposition into atoms of distributions on spaces of homogeneous type. Adv. Math. 33(3), 271–309 (1979) zbMATHCrossRefGoogle Scholar
  15. 15.
    Macías, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33(3), 257–270 (1979) zbMATHCrossRefGoogle Scholar
  16. 16.
    Mosco, U.: Variational fractals. Ann. Sc. Norm. Supper. Pisa Cl. Sci. (4) 25(3–4), 683–712 (1998), 1997. Dedicated to Ennio De Giorgi MathSciNetGoogle Scholar
  17. 17.
    Royden, H.L.: Real Analysis. Macmillan, New York (1963) zbMATHGoogle Scholar
  18. 18.
    Wu, J.-M.: Hausdorff dimension and doubling measures on metric spaces. Proc. Am. Math. Soc. 126(5), 1453–1459 (1998) zbMATHCrossRefGoogle Scholar
  19. 19.
    Yung, P.-L.: Doubling properties of self-similar measures. Indiana Univ. Math. J. 56(2), 965–990 (2007) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2008

Authors and Affiliations

  1. 1.Departamento de Matemática (FIQ-UNL)Instituto de Matemática Aplicada del Litoral (CONICET-UNL)Santa FeArgentina
  2. 2.Departamento de Matemática (FHUC-UNL)Instituto de Matemática Aplicada del Litoral (CONICET-UNL)Santa FeArgentina

Personalised recommendations