Skip to main content
Log in

Eigenvalues Estimate for the Neumann Problem of a Bounded Domain

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this note, we investigate upper bounds of the Neumann eigenvalue problem for the Laplacian of a domain Ω in a given complete (not compact a priori) Riemannian manifold (M,g). For this, we use test functions for the Rayleigh quotient subordinated to a family of open sets constructed in a general metric way, interesting for itself. As applications, we prove that if the Ricci curvature of (M,g) is bounded below Ric g≥−(n−1)a 2, a≥0, then there exist constants A n >0,B n >0 only depending on the dimension, such that

$$\lambda _{k}(\Omega)\le A_{n}a^{2}+B_{n}\left(\frac{k}{V}\right)^{2/n},$$

where λ k (Ω) (k∈ℕ*) denotes the k-th eigenvalue of the Neumann problem on any bounded domain Ω⊂M of volume V=Vol (Ω,g). Furthermore, this upper bound is clearly in agreement with the Weyl law. As a corollary, we get also an estimate which is analogous to Buser’s upper bounds of the spectrum of a compact Riemannian manifold with lower bound on the Ricci curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bérard, P.: Spectral Geometry: Direct and Inverse Problems. Lecture Notes in Mathematics, vol. 1207 (1986)

  2. Brooks, R.: The spectral geometry of a tower of coverings. J. Differ. Geom. 23(1), 97–107 (1986)

    MATH  MathSciNet  Google Scholar 

  3. Buser, P.: Beispiele für λ 1 aud kompakten Mannigfaltigkeiten. Math. Z. 165, 107–133 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buser, P.: A note on the isoperimetric constant. Ann. Sci. Ecole Norm. Sup. (4) 15(2), 213–230 (1982)

    MATH  MathSciNet  Google Scholar 

  5. Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143, 289–297 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Colbois, B., Dodziuk, J.: Riemannian metrics with large λ 1. Proc. Am. Math. Soc. 122(3), 905–906 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Mathematics. CRC Press, New York (1992)

    Google Scholar 

  8. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Springer, New York (1987)

    MATH  Google Scholar 

  9. Grigor’yan, A., Yau, S.-T.: Decomposition of a metric space by capacitors. In: Differential Equations: La Pietra 1996 (Florence). Proc. Sympos. Pure Math. 65, pp. 39–75. Am. Math. Soc., Providence (1999)

    Google Scholar 

  10. Korevaar, N.: Upper bounds for eigenvalues of conformal metrics. J. Differ. Geom. 37(1), 73–93 (1993)

    MATH  MathSciNet  Google Scholar 

  11. Kröger, P.: Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space. J. Funct. Anal. 106(2), 353–357 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, P., Yau, S.-T.: Estimates of eigenvalues of a compact Riemannian manifold. Proc. Sympos. Pure Math. 36, 205–239 (1980)

    MathSciNet  Google Scholar 

  13. Sakai, T.: Riemannian Geometry. Am. Math. Soc., Providence (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Colbois.

Additional information

Communicated by Peter Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colbois, B., Maerten, D. Eigenvalues Estimate for the Neumann Problem of a Bounded Domain. J Geom Anal 18, 1022–1032 (2008). https://doi.org/10.1007/s12220-008-9041-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-008-9041-z

Keywords

Mathematics Subject Classification (2000)

Navigation