Skip to main content
Log in

A Third-Order Dispersive Flow for Closed Curves into Kähler Manifolds

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This article is devoted to studying the initial value problem for a third-order dispersive equation for closed curves into Kähler manifolds. This equation is a geometric generalization of a two-sphere valued system modeling the motion of vortex filament. We prove the local existence theorem by using geometric analysis and classical energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, N.H., Shatah, J., Uhlenbeck, K.: Schrödinger maps. Commun. Pure Appl. Math. 53, 590–602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Da Rios, L.S.: On the motion of an unbounded fluid with a vortex filament of any shape. Rend. Circ. Mat. Palermo 22, 117–135 (1906) (in Italian)

    Article  MATH  Google Scholar 

  3. Ding, W.Y.: On the Schrödinger flows. Proc. ICM II, 283–291 (2002)

    Google Scholar 

  4. Doi, S.-I.: Smoothing effects of Schrödinger evolution groups on Riemannian manifolds. Duke Math. J. 82, 679–706 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fukumoto, Y., Miyazaki, T.: Three-dimensional distortions of a vortex filament with axial velocity. J. Fluid Mech. 222, 369–416 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gromov, M.L., Rohlin, V.A.: Embeddings and immersions in Riemannian geometry. Usp. Mat. Nauk 25, 3–62 (1970) (in Russian). English translation: Russ. Math. Survey 25, 1–57 (1970)

    MATH  MathSciNet  Google Scholar 

  7. Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51(51), 477–485 (1972)

    Article  MATH  Google Scholar 

  8. Koiso, N.: The vortex filament equation and a semilinear Schrödinger equation in a Hermitian symmetric space. Osaka J. Math. 34, 199–214 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Koiso, N.: Convergence to a geodesic. Osaka J. Math. 30, 559–565 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Landau, L.D., Lifschitz, E.M.: On the theory of the dispersion of magnetic permeability in ferro-aquatic bodies. Physica A (Soviet Union) 153 (1935)

  11. McGahagan, H.: An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ. 32, 375–400 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nahmod, A., Stefanov, A., Uhlenbeck, K.: On Schrödinger maps. Commun. Pure Appl. Math. 56(1), 114–151 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nahmod, A., Stefanov, A., Uhlenbeck, K.: Erratum: “On Schrödinger maps” [Commun. Pure Appl. Math. 56(1), 114–151 (2003); MR1929444]. Commun. Pure Appl. Math. 57, 833–839 (2004)

    Article  MathSciNet  Google Scholar 

  14. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)

    Article  MathSciNet  Google Scholar 

  15. Nishiyama, T., Tani, A.: Initial and initial-boundary value problems for a vortex filament with or without axial flow. SIAM J. Math. Anal. 27, 1015–1023 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pang, P.Y.Y., Wang, H.Y., Wang, Y.D.: Schrödinger flow on Hermitian locally symmetric spaces. Commun. Anal. Geom. 10, 653–681 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Shatah, J., Zeng, C.: Schrödinger maps and anti-ferromagnetic chains. Commun. Math. Phys. 262, 299–315 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sulem, P.-L., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107, 431–454 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tani, A., Nishiyama, T.: Solvability of equations for motion of a vortex filament with or without axial flow. Publ. Res. Inst. Math. Sci. 33, 509–526 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Onodera.

Additional information

The author is supported by the JSPS Research Fellowships for Young Scientists and the JSPS Grant-in-Aid for Scientific Research No. 19⋅3304.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onodera, E. A Third-Order Dispersive Flow for Closed Curves into Kähler Manifolds. J Geom Anal 18, 889–918 (2008). https://doi.org/10.1007/s12220-008-9023-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-008-9023-1

Keywords

Mathematics Subject Classification (2000)

Navigation