Skip to main content
Log in

Inertial Wave Beam Path in a Non-uniformly Rotating Cylinder with Sloping Ends

  • Research
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The features of the inertial wave beam propagation in a librating cylindrical cavity with symmetrically inclined end-walls are experimentally studied. The geometry provides the existence of two flow regimes – inertial wave attractor and the case of symmetric beam reflection that is like the closed periodic orbit in a rotating spherical shell. Despite the visual similarity, the nature of the regimes is different. The first is due to the geometric focusing of the beams into the limit cycle after a series of reflections from sloping ends, and the second with the symmetry wave path for a given frequency and cavity geometry. Although the geometry of the problem is three-dimensional, these regimes are almost two-dimensional: the closed wave trajectory is trapping near the plane of the direction of the slope gradient of the ends. Also, we study the scaling laws for the width and amplitude of the oscillating shear layers in the axial section. At large amplitudes of the librational forcing, the global azimuthal vorticity grows in a quadratic manner, which indicates the development of a nonlinear regime of inertial waves. Fourier analysis shows that a spectrum, besides the fundamental frequency, contains two sets of closely spaced subharmonic frequencies that satisfy the triadic resonance condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data available on request from the corresponding authors.

References

  • Boisson, J., Lamriben, C., Maas, L.R.M., Cortet, P., Moisy, F.: Inertial waves and modes excited by the libration of a rotating cube. Phys. Fluids. 24, (2012)

    Article  Google Scholar 

  • Borcia, I.D., Abouzar, G.V., Harlander, U.: Inertial wave mode excitation in a rotating annulus with partially librating boundaries. Fluid Dyn. Res. 46, (2014)

    Article  MathSciNet  Google Scholar 

  • Boury, S., Sibgatullin, I., Ermanyuk, E., Shmakova, N., Odier, P., Joubaud, S., Maas, L.R.M., Dauxois, T.: Vortex cluster arising from an axisymmetric inertial wave attractor. J. Fluid Mech. 926, A12 (2021)

    Article  MATH  Google Scholar 

  • Brouzet, C., Ermanyuk, E.V., Joubaud, S., Pillet, G., Dauxois, T.: Internal wave attractors: different scenarios of instability. J. Fluid Mech. 811, 544–568 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Brunet, M., Dauxois, T., Cortet, P.-P.: Linear and nonlinear regimes of an inertial wave attractor. Phys. Rev. Fluids 4, (2019)

    Article  Google Scholar 

  • Calkins, M.A., Noir, J., Eldredge, J.D., Aurnou, J.M.: Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids. 22, (2010)

    Article  Google Scholar 

  • Favier, B., Barker, A., Baruteau, C., Ogilvie, G.: Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. r. Astron. Soc. 439, 845–860 (2014)

    Article  Google Scholar 

  • Fernandez, J., Sánchez, P.S., Tinao, I., Porter, J., Ezquerro, J.M.: The CFVib experiment: control of fuids in microgravity with vibrations. Microgravity Sci. Technol. 29, 351–364 (2017)

    Article  Google Scholar 

  • Flandrin, P.: Time-frequency/time-scale analysis, time-frequency toolbox for MATlab. Academic Press, San Diego (CA (1999)

    MATH  Google Scholar 

  • Gao, F., Chew, J.W., Marxen, O.: Inertial waves in turbine rim seal flows. Phys. Rev. Fluids 5, (2020)

    Article  Google Scholar 

  • Greenspan, H.P.: The Theory of Rotating Fluids. University Press, Cambridge (1968)

    MATH  Google Scholar 

  • He, J., Favier, B., Rieutord, M., Le Dizès, S.: Internal shear layers in librating spherical shells: the case of periodic characteristic paths. J. Fluid Mech. 939, A3 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Karpunin, I., Kozlov, N.: Dynamics of Two-liquid System at Rotation and Vibration with Equal Frequencies. Microgravity Sci. Technol. 32, 973–982 (2020)

    Article  Google Scholar 

  • Kawaji, M., Lyubimov, D., Ichikawa, N., et al.: The Effects of Forced Vibration on the Motion of a Large Bubble Under Microgravity. Microgravity Sci. Technol. 33, 62 (2021)

    Article  Google Scholar 

  • Kerswell, R.: On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary layers. J. Fluid Mech. 298, 311–325 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov, V.G., Ivanova, A.A.: Dramatic effect of vibrations on dynamics of rotating hydrodynamic systems. Microgravity Sci. Technol. 21, 339–348 (2009)

    Article  Google Scholar 

  • Kozlov, V.G., Ivanova, A.A., Vjatkin, A.A., Sabirov R.R.: Vibrational convection of heat-generating fluid in a rotating horizontal cylinder. The role of relative cavity length. Acta Astronaut. 112, 48–55 (2015)

  • Kozlov, V., Rysin, K., Vjatkin, A.: Thermal Vibrational Convection in a Rotating Plane Layer. Microgravity Sci. Technol. 34, 62 (2022)

    Article  Google Scholar 

  • Le Bars, M., Cébron, D., Le Gal, P.: Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163–193 (2015)

    Article  MathSciNet  Google Scholar 

  • Lin, Y., Noir, J.: Libration-driven inertial waves and mean zonal flows in spherical shells. Geophys. Astrophys. Fluid Dyn. 115(3), 258–279 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Maas, L.R.M., Benielli, D., Sommeria, J., Lam, F.P.A.: Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388, 557–561 (1997)

    Article  Google Scholar 

  • Maas, L.R.M.: Wave attractors: linear yet nonlinear. Intl J. Bifurcation Chaos. 15(9), 2757–2782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Manders, A.M.M., Maas, L.R.M.: Observations of inertial waves in a rectangular basin with one sloping boundary. J. Fluid Mech. 493, 59–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Mercier, M.J., Garnier, N.B., Dauxois, T.: Reflection and diffraction of internal waves analysed with the Hilbert transform. Phys. Fluids 20, (2008)

    Article  MATH  Google Scholar 

  • Messio, L., Morize, C., Rabaud, M., Moisy, F.: Experimental observation using particle image velocimetry of inertial waves in a rotating fluid. Exp. Fluids. 44, 519–528 (2008)

    Article  Google Scholar 

  • Monsalve, E., Brunet, M., Gallet, B., Cortet, P.: Quantitative experimental observation of weak inertial-wave turbulence. Phys. Rev. Lett. 125, (2020)

    Article  Google Scholar 

  • Perminov, A.V., Nikulina, S.A., Lyubimova, T.P.: Analysis of Thermovibrational Convection Modes in Square Cavity Under Microgravity Conditions. Microgravity Sci. Technol. 34, 34 (2022)

    Article  Google Scholar 

  • Phillips, O.M.: Energy transfer in rotating fluids by reflection of inertial waves. Phys. Fluids 6, 513–520 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Pillet, G., Ermanyuk, E., Maas, L., Sibgatullin, I., Dauxois, T.: Internal wave attractors in three-dimensional geometries: trapping by oblique reflection. J. Fluid Mech. 845, 203–225 (2018)

    Article  Google Scholar 

  • Pillet, G., Maas, L.R.M., Dauxois, T.: Internal wave attractors in 3D geometries : A dynamical systems approach. Eur. J. Mech. B-Fluid. 77, 1–16 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Rabitti, A., Maas, L.R.M: Meridional trapping and zonal propagation of inertial waves in a rotating fluid shell. J. Fluid Mech. 729, 445–470 (2013)

  • Rieutord, M., Georgeot, B., Valdettaro, L.: Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Ryazanov, D.A., Sibgatullin, I.N., Providukhina, M.I., Ermanyuk, E.V.: Biharmonic attractors of internal gravity waves. Fluid Dyn. 56(3), 403–412 (2021)

    Article  MathSciNet  Google Scholar 

  • Sauret, A., Cébron, D., Le Bars, M., Le Dizès, S.: Fluid flows in a librating cylinder. Phys. Fluids 24, (2012)

    Article  Google Scholar 

  • Scolan, H., Ermanyuk, E., Dauxois, T.: Nonlinear fate of internal waves attractors. Phys. Rev. Lett. 110, (2013)

    Article  Google Scholar 

  • Sibgatullin, I.N., Ermanyuk, E.V.: Internal and inertial wave attractors: a review. J. Appl. Mech. Tech. Phys. 60, 284–302 (2019)

    Article  MathSciNet  Google Scholar 

  • Subbotin, S., Dyakova, V.: Inertial waves and steady flows in a liquid filled librating cylinder. Microgravity Sci. Technol. 30, 383–392 (2018)

    Article  Google Scholar 

  • Subbotin, S., Shiryaeva, M.: On the linear and non-linear fluid response to the circular forcing in a rotating spherical shell. Phys. Fluids. 33, (2021)

    Article  Google Scholar 

  • Subbotin, S.V., Shiryaeva, M.A.: Experimental study of the linear and nonlinear regimes of inertial wave attractors in a rotating cylinder with non-axisymmetric ends. J. Appl. Mech. Tech. Phys. 64(2), (2023). https://doi.org/10.1134/S0021894423020098.

  • Subbotin, S., Shiryaeva, M.: Steady vortex flow induced by inertial wave attractor in a rotating cylinder with liquid. Microgravity Sci. Technol. 34(5), 89 (2022)

    Article  Google Scholar 

  • Subbotin, S.: Steady circulation induced by inertial modes in a librating cylinder. Phys. Rev. Fluids. 5(1) (2020)

    Article  Google Scholar 

  • Smorodin, B.L., Kartavykh, N.N.: Periodic and Chaotic Oscillations in a Low Conducting Liquid in an Alternating Electric Field. Microgravity Sci. Technol. 32, 423–434 (2020)

    Article  Google Scholar 

  • Thielicke, W., Stamhuis, E. J.: PIVlab – Time-resolved digital particle image velocimetry tool for MATLAB (version: 1.41). J. Open Res. Software 2(1), e30 (2014)

  • Vjatkin, A., Siraev, R., Kozlov, V.: Theoretical and experimental study of thermal convection in rotating horizontal annulus. Microgravity Sci. Technol. 32, 1133–1145 (2020)

    Article  Google Scholar 

  • Wu, K., Welfert, B.D., Lopez, J.M.: Librational forcing of a rapidly rotating fluid-filled cube. J. Fluid Mech. 842, 469–494 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, K., Welfert, B.D., Lopez, J.M.: Reflections and focusing of inertial waves in a librating cube with the rotation axis oblique to its faces. J. Fluid Mech. 896, A5 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, K., Welfert, B.D., Lopez, J.M.: Reflections and focusing of inertial waves in a tilted librating cube. J. Fluid Mech. 947, A10 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J., Wang, S., Chen, X., Wang, W., Xu, Y.: Three-dimensional evolution of internal waves reflected from a submarine seamount. Phys. Fluids 29, (2017)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Grant No. 18–71–10053).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, project administration and supervision, S.S.; methodology, S.S. and M.S.; experimental investigation, M.S. and S.S.; analysis of the results, S.S. and M.S.; writing—original draft preparation, S.S. and M.S.; writing—review and editing, S.S. All authors reviewed the manuscript.

Corresponding author

Correspondence to Stanislav Subbotin.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotin, S., Shiryaeva, M. Inertial Wave Beam Path in a Non-uniformly Rotating Cylinder with Sloping Ends. Microgravity Sci. Technol. 35, 32 (2023). https://doi.org/10.1007/s12217-023-10054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-023-10054-z

Keywords

Navigation