Skip to main content
Log in

Dynamic Modeling and Control for a Double-State Microgravity Vibration Isolation System

  • Research
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The microgravity vibration isolation systems (MVIS) are characterized by system coupling, uncertainties, nonlinearity, variable mass and momentum of inertia. These characteristics lead to a challenging control system design problem. In this paper, a double-stage microgravity vibration isolation system is introduced. The relative motion dynamics and absolute motion dynamics of the system are established via Newton's law, thereafter the linearized and decoupled model is derived for control design. A robust backstepping controller is proposed to suppress the accelerations transmitted to the payload, as well as to address the challenges of system uncertainties and nonlinearity. The validity of the relative motion dynamics of the system is demonstrated by comparing the experimental data with the simulation results. The Lyapunov theory is used for proving the stability of the proposed controller. Simulations show that the robust backstepping controller is capable of suppressing microgravity acceleration disturbances from 1 to 100 Hz at around 19 dB and tracking the displacement to zero position fast, which performs well in the time domain and frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

Download references

Funding

National Key R&D Program of China (2020YFC2200600).

Author information

Authors and Affiliations

Authors

Contributions

Guangcheng Ma: Methodology, Writing—review & editing, Aixue Wang: Writing—original draft, Shuquan Wang: Experiment, Writing—review & editing, Hongwei Xia, Writing—review & editing, Funding acquisition.

Corresponding author

Correspondence to Guangcheng Ma.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

To express Eqs. (32) and (33) of motion in concise form, the following definitions are introduced.

\(\begin{array}{c}{\mathbf{C}}_1=\left[\begin{array}{cc}c_{11}&c_{12}\\c_{21}&c_{22}\end{array}\right],\;{\mathbf{K}}_1=\left[\begin{array}{cc}k_{11}&k_{12}\\k_{21}&k_{22}\end{array}\right],\;{\mathbf{D}}_1=\left[\begin{array}{c}d_1\\d_2\end{array}\right]\\{\mathbf{C}}_2=\left[\begin{array}{cc}c_{31}&c_{32}\\c_{41}&c_{42}\end{array}\right],\;{\mathbf{K}}_2=\left[\begin{array}{cc}k_{31}&k_{32}\\k_{41}&k_{42}\end{array}\right],\;{\mathbf{D}}_2=\left[\begin{array}{c}d_3\\d_4\end{array}\right]\end{array}\)  

with

$$\begin{array}{l}{c}_{11}={2}^{I}{{\varvec{\upomega}}}^{C\times }+{\mathbf{C}}_{tt}/{m}_{S}\\ {c}_{12}=\left({\mathbf{C}}_{tr}-{\mathbf{C}}_{tt}{\mathbf{r}}_{{u}_{0}u}^{\times }\right)/{m}_{S}\\ {c}_{21}=\left({\mathbf{C}}_{rt}+{\mathbf{r}}_{{u}_{0}u}^{\times }{\mathbf{C}}_{tt}\right)\\ {c}_{22}={\mathbf{J}}_{S}^{-1}[{{\mathbf{J}}_{S}}^{I}{{\varvec{\upomega}}}^{C\times }{+}^{I}{{\varvec{\upomega}}}^{C\times }{\mathbf{J}}_{S}-{({{\mathbf{J}}_{S}}^{I}{{\varvec{\upomega}}}^{C})}^{\times }]\\ {k}_{11}=\frac{{\mu }_{E}}{{r}_{{I}_{0}{B}_{0}}^{3}}{\mathbf{A}}_{r}{-}^{I}{\alpha }^{C\times }{-}^{I}{{\varvec{\upomega}}}^{C\times }{}^{I}{{\varvec{\upomega}}}^{C\times }+{\mathbf{K}}_{tt}/{m}_{S}{k}_{12}=\left({\mathbf{K}}_{tr}-{\mathbf{K}}_{tt}{\mathbf{r}}_{{u}_{0}u}^{\times }\right)/{m}_{S}\\ {k}_{21}=-({\mathbf{C}}_{rt}{\mathbf{r}}_{{u}_{0}u}^{\times }-{\mathbf{C}}_{rr}-{\mathbf{r}}_{{u}_{0}u}^{\times }{\mathbf{C}}_{tr}+{\mathbf{r}}_{{u}_{0}u}^{\times }{\mathbf{C}}_{tt}\cdot {\mathbf{r}}_{{u}_{0}u}^{\times })\\ {k}_{22}=-({\mathbf{K}}_{rt}{\mathbf{r}}_{{u}_{0}u}^{\times }-{\mathbf{K}}_{rr}-{\mathbf{r}}_{{u}_{0}u}^{\times }{\mathbf{K}}_{tr}+{\mathbf{r}}_{{u}_{0}u}^{\times }{\mathbf{K}}_{tt}{\mathbf{r}}_{{u}_{0}u}^{\times })\\ +{\mathbf{J}}_{S}^{-1}\left[{{\mathbf{J}}_{S}}^{S}{{\varvec{\upalpha}}}^{C\times }+{\mathbf{J}}_{S}{({{(}^{C}{\mathbf{Q}}^{B}{}^{I}{{\varvec{\upomega}}}^{B})}^{\times }{+}^{B}{{\varvec{\upomega}}}^{C})}^{\times }\right.\left.-{{\mathbf{J}}_{S}}^{I}{{\varvec{\upomega}}}^{C\times }{}^{I}{{\varvec{\upomega}}}^{C\times }{+}^{I}{{\varvec{\upomega}}}^{C\times }{{\mathbf{J}}_{S}}^{I}{{\varvec{\upomega}}}^{C\times }\right]\\ {d}_{1}=({\mathbf{F}}_{\Delta S}-{\mathbf{F}}_{cF})/{m}_{S}-\left({\mathbf{F}}_{\Delta B}/{m}_{B}+{\mathbf{F}}_{\Delta C}/{m}_{C}\right)\\ -\left(\frac{{\mu }_{E}}{{r}_{{I}_{0}{B}_{0}}^{3}}{\mathbf{A}}_{r}{-}^{I}{\alpha }^{B\times }{-}^{I}{{\varvec{\upomega}}}^{B\times I}{{\varvec{\upomega}}}^{B\times }\right){\mathbf{r}}_{{B}_{0}{C}_{0}}+{\mathbf{F}}_{\Delta u}\\ {d}_{2}={\mathbf{J}}_{S}^{-1}(-{\mathbf{M}}_{cF}+{\mathbf{M}}_{\Delta S}){-}^{I}{{\varvec{\upalpha}}}^{C}\\ -{({}^{C}{\mathrm{Q}}^{BI}{{\varvec{\upomega}}}^{B})}^{\times B}{{\varvec{\upomega}}}^{C}-{\mathbf{J}}_{S}^{-1}{}^{I}{{\varvec{\upomega}}}^{C\times }{{\mathbf{J}}_{S}}^{I}{{\varvec{\upomega}}}^{C}\end{array}$$

Robust to Noise Microgravity

$$\begin{array}{l}{c}_{31}={2}^{I}{{\varvec{\upomega}}}^{S\times }\\ {c}_{32}={0}_{3\times 3}\\ {c}_{41}={0}_{3\times 3}\\ {c}_{42}={\mathbf{J}}_{F}^{-1}\left[{{\mathbf{J}}_{F}}{}^{I}{\varvec{\upomega}}^{S\times }{+}^{I}{{\varvec{\upomega}}}^{S\times }{\mathbf{J}}_{F}-{({{\mathbf{J}}_{F}}{}^{I}{\omega }^{S})}^{\times }\right]\\ {k}_{31}=\frac{{\mu }_{E}}{{r}_{{I}_{0}{B}_{0}}^{3}}{\mathbf{A}}_{r}{-}^{I}{{\varvec{\upalpha}}}^{S\times }{-}^{I}{{\varvec{\upomega}}}^{S\times }{}^{I}{{\varvec{\upomega}}}^{S\times }\\ {k}_{32}={0}_{3\times 3}\\ {k}_{41}={0}_{3\times 3}\\ {k}_{42}={\mathbf{J}}_{F}^{-1}\left[{{\mathbf{J}}_{F}}{}^{I}{\alpha }^{S\times }-{({{\mathbf{J}}_{F}}{}^{I}{{\varvec{\upomega}}}^{S})}^{\times }{}^{I}{{\varvec{\upomega}}}^{S\times }{+}^{I}{{\varvec{\upomega}}}^{S\times }{{\mathbf{J}}_{F}}{}^{I}{{\varvec{\upomega}}}^{S\times }\right]\\ {d}_{3}={\mathbf{F}}_{\Delta F}/{m}_{F}-{\mathbf{F}}_{\Delta B}/{m}_{B}\\ -\left(\frac{{\mu }_{E}}{{r}_{{I}_{0}{B}_{0}}^{3}}{\mathbf{A}}_{r}{-}^{I}{{\varvec{\upalpha}}}^{B\times }{-}^{I}{{\varvec{\upomega}}}^{B\times I}{{\varvec{\upomega}}}^{B\times }\right)({\mathbf{r}}_{{B}_{0}{C}_{0}}+{\mathbf{r}}_{{C}_{0}{S}_{0}})\\ {d}_{4}={\mathbf{J}}_{F}^{-1}{\mathbf{M}}_{\Delta F}{-}^{I}{{\varvec{\upalpha}}}^{S}-{\mathbf{J}}_{F}^{-1}{}^{I}{{\varvec{\upomega}}}^{S\times }{\mathbf{J}}_{F}{}^{I}{{\varvec{\upomega}}}^{S}\end{array}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Wang, S., Xia, H. et al. Dynamic Modeling and Control for a Double-State Microgravity Vibration Isolation System. Microgravity Sci. Technol. 35, 9 (2023). https://doi.org/10.1007/s12217-022-10027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-10027-8

Keywords

Navigation