Skip to main content
Log in

Global Gravity Field Model from Taiji-1 Observations

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Taiji-1 is the first technology demonstration satellite of the Taiji program of China’s space-borne gravitational wave antenna. After the demonstration of the key individual technologies, Taiji-1 continues collecting the data of the precision orbit determinations, satellite attitudes, and non-conservative forces exerted on the S/C. Therefore, during its free-fall, Taiji-1 can be viewed as operating in the high-low satellite-to-satellite tracking mode of a gravity recovery mission. In this work, we have selected and analyzed the one month data from Taiji-1’s observations, and developed the techniques to resolve the long term interruptions and disturbances in the data due to the scheduled technology demonstration experiments. The first global gravity model TJGM-r1911, that independently derived from China’s own satellite mission, is successfully built from Taiji-1’s observations. Compared with gravity models from CHAMP and other satellite gravity missions, the accuracy discrepancies exist, which is mainly caused by the data discontinuity problem. As the extended free-falling phase been approved, Taiji-1 could serve as a gravity recovery mission for China since 2022 and it will provide us the independent measurement of both the static and the monthly time-variable global gravity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

Download references

Funding

This work is supported by the National Key Research and Development Program of China No. 2020YFC2200601 and No. 2020YFC2200104, the Strategic Priority Research Program of the Chinese Academy of Sciences Grant No. XDA15020700, and the Youth Fund Project of National Natural Science Foundation of China No. 11905017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xu.

Ethics declarations

Conflicts of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Research Pioneer and Leader of Microgravity Science in China: Dedicated to the 85th Birthday of Academician Wen-Rui Hu

Guest Editors: Jian-Fu Zhao, Kai Li

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Xu, P., Zhao, S. et al. Global Gravity Field Model from Taiji-1 Observations. Microgravity Sci. Technol. 34, 77 (2022). https://doi.org/10.1007/s12217-022-09998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09998-5

Keywords

Navigation